Previous |  Up |  Next

Article

Title: On factorization of probability distributions over directed graphs (English)
Author: Matúš, František
Author: Strohmeier, Bernhard
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 1
Year: 1998
Pages: [57]-68
Summary lang: English
.
Category: math
.
Summary: Four notions of factorizability over arbitrary directed graphs are examined. For acyclic graphs they coincide and are identical with the usual factorization of probability distributions in Markov models. Relations between the factorizations over circuits are described in detail including nontrivial counterexamples. Restrictions on the cardinality of state spaces cause that a factorizability with respect to some special cyclic graphs implies the factorizability with respect to their, more simple, strict edge-subgraphs. This gives sometimes the possibility to break circuits and get back to the acyclic, well-understood case. (English)
Keyword: factorizability
Keyword: directed graph
MSC: 05C20
MSC: 60B15
MSC: 62H99
MSC: 68T30
idZBL: Zbl 1274.60016
idMR: MR1619055
.
Date available: 2009-09-24T19:13:40Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135185
.
Reference: [1] Berman A., Plemmons R. J.: Nonnegative Matrices in the Mathematical Sciences.Academic Press, New York – San Francisco – London 1979 Zbl 0815.15016, MR 0544666
Reference: [2] Cox D. R., Wermuth N.: Multivariate Dependencies.(Monographs on Statistics and Applied Probability 67.) Chapman & Hall, London 1996 Zbl 0880.62124, MR 1456990
Reference: [3] Dawid A. P.: Conditional independence for statistical operations.Ann. Statist. 8 (1980), 598–617 Zbl 0434.62006, MR 0568723, 10.1214/aos/1176345011
Reference: [4] Lauritzen S. L.: Graphical Models.Clarendon Press, Oxford 1996 Zbl 1055.62126, MR 1419991
Reference: [5] Koster J. T. A.: Gibbs and Markov properties of graphs.Ann. Math. and Artificial Inteligence 21 (1997), 13–26 Zbl 0895.68115, MR 1479006, 10.1023/A:1018948915264
Reference: [6] Koster J. T. A.: Markov properties of non–recursive causal models.Ann. Statist. 24 (1996), 2148–2177 MR 1421166, 10.1214/aos/1069362315
Reference: [7] Spirtes P.: Directed cyclic graphical representation of feedback models.In: Proceedings of the Eleventh Conference on Uncertainty and Artificial Inteligence (P. Besnard and S. Hanks, eds.), Morgan Kaufman Publ. Inc., San Mateo 1995
Reference: [8] Strohmeier B.: Cyclical Causal Networks and Knowledge Integration.Ph.D. Dissertation. Fakultät für Wirtschaftswissenschaften, Universität Bielefeld 1996
Reference: [9] Vajda I.: Theory of Statistical Inference and Information.Kluwer Academic Publishers, Dordrecht – Boston – London 1989 Zbl 0711.62002
Reference: [10] Whittaker J.: Graphical Models in Applied Multivariate Statistics.J. Wiley, New York 1990 Zbl 1151.62053, MR 1112133
.

Files

Files Size Format View
Kybernetika_34-1998-1_6.pdf 1.717Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo