Previous |  Up |  Next

Article

Title: Considering uncertainty and dependence in Boolean, quantum and fuzzy logics (English)
Author: Navara, Mirko
Author: Pták, Pavel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 1
Year: 1998
Pages: [121]-134
Summary lang: English
.
Category: math
.
Summary: A degree of probabilistic dependence is introduced in the classical logic using the Frank family of $t$-norms known from fuzzy logics. In the quantum logic a degree of quantum dependence is added corresponding to the level of noncompatibility. Further, in the case of the fuzzy logic with $P$-states, (resp. $T$-states) the consideration turned out to be fully analogous to (resp. considerably different from) the classical situation. (English)
Keyword: degree of probabilistic dependence
Keyword: $t$-norm
Keyword: fuzzy logic
MSC: 03B48
MSC: 03B52
MSC: 03G12
idZBL: Zbl 1274.03101
idMR: MR1619059
.
Date available: 2009-09-24T19:14:16Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135190
.
Reference: [1] Beran L.: Orthomodular Lattices.Algebraic Approach. Academia, Praha 1984 Zbl 0677.06003, MR 0785005
Reference: [2] Butnariu D., Klement E. P.: Triangular Norm–Based Measures and Games with Fuzzy Coalitions.Kluwer, Dordrecht 1993 Zbl 0804.90145, MR 2867321
Reference: [3] Lucia P. de, Pták P.: Quantum probability spaces that are nearly classical.Bull. Polish Acad. Sci. Math. 40 (1992), 163–173 Zbl 0765.60001, MR 1401868
Reference: [4] Dubois D.: Generalized probabilistic independence and its implications for utility.Oper. Res. Lett. 5 (1986), 255–260 Zbl 0611.90013, MR 0874728, 10.1016/0167-6377(86)90017-9
Reference: [5] Dvurečenskij A., Riečan B.: On joint distribution of observables for F-quantum spaces.Fuzzy Sets and Systems 39 (1991), 65–73 MR 1089012, 10.1016/0165-0114(91)90066-Y
Reference: [6] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$.Aequationes Math. 19 (1979), 194–226 Zbl 0444.39003, MR 0556722, 10.1007/BF02189866
Reference: [7] Kalmbach G.: Orthomodular Lattices.Academic Press, London 1983 Zbl 0554.06009, MR 0716496
Reference: [8] Kläy M. P., Foulis D. J.: Maximum likelihood estimation on generalized sample spaces: an alternative resolution of Simpson’s paradox.Found. Phys. 20 (1990), 777–799 MR 1008686, 10.1007/BF01889691
Reference: [9] Klement E. P., Mesiar R., Navara M.: Extensions of Boolean functions to $T$-tribes of fuzzy sets.BUSEFAL 63 (1995), 16–21
Reference: [10] Klement E. P., Navara M.: A characterization of tribes with respect to the Łukasiewicz $t$-norm.Czechoslovak Math. J. 47 (122) (1997), 689–700 Zbl 0902.28015, MR 1479313, 10.1023/A:1022822719086
Reference: [11] Majerník V., Pulmannová S.: Bell inequalities on quantum logics.J. Math. Phys. 33 (1992), 2173–2178 10.1063/1.529638
Reference: [12] Mesiar R.: Fundamental triangular norm based tribes and measures.J. Math. Anal. Appl. 177 (1993), 633–640 Zbl 0816.28014, MR 1231507, 10.1006/jmaa.1993.1283
Reference: [13] Mesiar R.: On the structure of $T_s$-tribes.Tatra Mountains Math. Publ. 3 (1993), 167–172 MR 1278531
Reference: [14] Mesiar R.: Do fuzzy quantum structures exist? Internat.J. Theoret. Physics 34 (1995), 1609–1614 MR 1353705, 10.1007/BF00676273
Reference: [15] Mesiar R., Navara M.: $T_s$-tribes and $T_s$-measures.J. Math. Anal. Appl. 201 (1996), 91–102 MR 1397888, 10.1006/jmaa.1996.0243
Reference: [16] Mundici D.: Interpretation of AF C$^*$-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63 Zbl 0597.46059, MR 0819173, 10.1016/0022-1236(86)90015-7
Reference: [17] Navara M.: A characterization of triangular norm based tribes.Tatra Mountains Math. Publ. 3 (1993), 161–166 Zbl 0799.28013, MR 1278530
Reference: [18] Navara M.: Algebraic approach to fuzzy quantum spaces.Demonstratio Math. 27 (1994), 589–600 Zbl 0830.03032, MR 1319404
Reference: [19] Navara M.: On generating finite orthomodular sublattices.Tatra Mountains Math. Publ. 10 (1997), 109–117 Zbl 0915.06004, MR 1469286
Reference: [20] Navara M., Pták P.: P-measures on soft fuzzy $\sigma $-algebras.Fuzzy Sets and Systems 56 (1993), 123–126 Zbl 0816.28011, MR 1223202, 10.1016/0165-0114(93)90193-L
Reference: [21] Navara M., Pták P.: Uncertainty and dependence in classical and quantum logic – the role of triangular norms.To appear Zbl 0988.03096
Reference: [22] Piasecki K.: Probability of fuzzy events defined as denumerable additivity measure.Fuzzy Sets and Systems 17 (1985), 271–284 Zbl 0604.60005, MR 0819364, 10.1016/0165-0114(85)90093-4
Reference: [23] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht – Boston – London 1991 MR 1176314
Reference: [24] Pták P., Pulmannová S.: A measure–theoretic characterization of Boolean algebras among orthomodular lattices.Comment. Math. Univ. Carolin. 35 (1994), 205–208 Zbl 0805.06010, MR 1292596
Reference: [25] Pykacz J.: Fuzzy set ideas in quantum logics.Internat. J. Theoret. Phys. 31 (1992), 1765–1781 Zbl 0789.03049, MR 1183522, 10.1007/BF00671785
Reference: [26] Salvati S.: A characterization of Boolean algebras.Ricerche Mat. 43 (1994), 357–363 Zbl 0915.06005, MR 1324757
Reference: [27] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, New York 1983 Zbl 0546.60010, MR 0790314
.

Files

Files Size Format View
Kybernetika_34-1998-1_11.pdf 1.494Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo