Full entry |
PDF
(1.3 MB)
Feedback

possibilistic measure; conditional probability; statistical independence

References:

[1] Campos L. M. de, Heuter J. F., Moral S.: **Possibilistic independence**. In: Proceedings of EUFIT 95 (Third European Congress on Intelligent Techniques and Soft Computing), Verlag Mainz and Wissenschaftsverlag, Aachen 1995, vol. 1, pp. 69–73

[2] Dubois D., Prade H.: **Théorie des Possibilités – Applications à la Représentation de Connaissances en Informatique**. Mason, Paris 1985

[3] Hisdal E.: **Conditional possibilities, independence and noninteraction**. Fuzzy Sets and Systems 1 (1978), 283–297 DOI 10.1016/0165-0114(78)90019-2 | Zbl 0393.94050

[4] Kramosil I.: **Extensional processing of probability measures**. Internat. J. Gen. Systems 22 (1994), 159–170 DOI 10.1080/03081079308935203 | Zbl 0797.60002

[5] Kramosil I.: **An axiomatic approach to extensional probability measures**. In: Proceedings of the European Conference Symbolic and Quantitative Approaches to Reasoning and Uncertainty, Fribourg (Lecture Notes in Artificial Intelligence 946.) Springer–Verlag, Berlin 1995, pp. 267–276 MR 1464978

[6] Lewis D.: **Probabilities of conditionals and conditional probabilities**. Philos. Review 85 (1976), 297–315 DOI 10.2307/2184045

[8] Pearl J.: **Probabilistic Reasoning in Intelligent Systems – Networks of Plausible Inference**. Morgan and Kaufmann, San Matteo, California 1988 MR 0965765 | Zbl 0746.68089

[9] Shafer G.: **A Mathematical Theory of Evidence**. Princeton Univ. Press, Princeton, New Jersey 1976 MR 0464340 | Zbl 0359.62002

[10] Smets, Ph.: **About updating**. In: Uncertainty in Artificial Intelligence 91 (D’Ambrosio, Ph. Smets and P. P. Bonissone, eds.), Morgan Kaufman, Sao Matteo, California 1991, pp. 378–385

[11] Zadeh L. A.: **Fuzzy sets as a basis for a theory of possibility**. Fuzzy Sets and Systems 1 (1978), 3–28 DOI 10.1016/0165-0114(78)90029-5 | MR 0480045