Previous |  Up |  Next


factor analysis; rotation problem; Bayesian prediction
Reconstruction of underlying physiological structures from a sequence of images is a long-standing problem which has been solved by factor analysis with a success. This paper tries to return to roots of the problem, to exploit the available findings and to propose an improved paradigm.
[1] Golub G. H., VanLoan C. F.: Matrix Computations. The John Hopkins University Press, Baltimore – London 1989 MR 1002570
[2] Kárný M., Šámal M.: Bayesian rank estimation with application to factor analysis. Kybernetika 30 (1994), 4, 433–443 MR 1303294 | Zbl 0813.62056
[3] Peterka V.: Bayesian system identification. In: Trends and Progress in System Identification (P. Eykhoff, ed.), Pergamon Press, Oxford 1981, pp. 239–304 MR 0746139 | Zbl 0451.93059
[4] Šámal M., Kárný M., Backfrieder W., Kletter K., Bergmann H.: Bayesian identification of compartment structures in dynamic scintigraphic data. In: Radioactive Isotopes in Clinical Medicine and Research (H. Bergmann and H. Sinzinger, eds.), Birkhäuser Verlag, Basel 1995, pp. 123–128
[5] Šámal M., Kárný M., Sůrová H., Dienstbier Z.: Theoretical and experimental basis of the clinical use of factor analysis. In: Radioactive Isotopes in Clinical Medicine and Research (R. Höffer, H. Bergmann, and H. Sinzinger, eds.), Schattauer Verlag, Stuttgart, New York 1991, pp. 200–203
[6] Šámal M., Kárný M., Zahálka D.: Bayesian identification of a physiological model in dynamic scintigraphic data. In: Information Processing in Medical Imaging, Springer 1993, pp. 422–437
Partner of
EuDML logo