Previous |  Up |  Next


optimal control of stochastic systems; sufficient statistic algebra; finite-dimensional controllers
In this paper we introduce the sufficient statistic algebra which is responsible for propagating the sufficient statistic, or information state, in the optimal control of stochastic systems. Certain Lie algebraic methods widely used in nonlinear control theory, are then employed to derive finite- dimensional controllers. The sufficient statistic algebra enables us to determine a priori whether there exist finite-dimensional controllers; it also enables us to classify all finite-dimensional controllers.
[1] Beneš V.: Exact finite-dimensional filters for certain diffusions with nonlinear drift. Stochastics 5 (1981), 65–92 DOI 10.1080/17442508108833174 | MR 0643062 | Zbl 0458.60030
[2] Brockett R., Clark J.: Geometry of the conditional density equation. In: Proceedings of the International Conference on Analysis and Optimization of Stochastic Systems, Oxford 1978 Zbl 0496.93049
[3] Charalambous C.: Partially observable nonlinear risk-sensitive control problems: Dynamic programming and verification theorems. IEEE Trans. Automat. Control, to appear MR 1469073 | Zbl 0886.93070
[4] Charalambous C., Elliott R.: Certain nonlinear stochastic optimal control problems with explicit control laws equivalent to LEQG/LQG problems. IEEE Trans. Automat. Control 42 (1997), 4. 482–497 DOI 10.1109/9.566658 | MR 1442583
[5] Charalambous C., Hibey J.: Minimum principle for partially observable nonlinear risk-sensitive control problems using measure-valued decompositions. Stochastics and Stochastics Reports 57 (1996), 2, 247–288 DOI 10.1080/17442509608834063 | MR 1425368 | Zbl 0891.93084
[6] Charalambous C., Naidu D., Moore K.: Solvable risk-sensitive control problems with output feedback. In: Proceedings of 33rd IEEE Conference on Decision and Control, Lake Buena Vista 1994, pp. 1433–1434
[7] Chen J., Yau S.-T., Leung C.-W.: Finite-dimensional filters with nonlinear drift IV: Classification of finite-dimensional estimation algebras of maximal rank with state-space dimension $3$. SIAM J. Control Optim. 34 (1996), 1, 179–198 DOI 10.1137/S0363012993251316 | MR 1372910 | Zbl 0847.93062
[8] Hazewinkel M., Willems J.: Stochastic systems: The mathematics of filtering and identification, and applications. In: Proceedings of the NATO Advanced Study Institute, D. Reidel, Dordrecht 1981 MR 0674319 | Zbl 0486.00016
[9] Marcus S.: Algebraic and geometric methods in nonlinear filtering. SIAM J. Control Optim. 26 (1984), 5, 817–844 DOI 10.1137/0322052 | MR 0762622 | Zbl 0548.93073
Partner of
EuDML logo