[1] Arapostathis A., Marcus S. I.: 
Analysis of an identification algorithm arising in the adaptive estimation of Markov chains. Mathematics of Control, Signals and Systems 3 (1990),1–29 
DOI 10.1007/BF02551353 | 
MR 1027318 | 
Zbl 0685.93063[2] Baras J. S., James M. R.: Robust and Risk–Sensitive Output Feedback Control for Finite State Machines and Hidden Markov Models, to be publishe. 
[3] Benveniste A., Métivier M., Priouret P.: 
Adaptive Algorithms and Stochastic Approximations. Springer–Verlag, Berlin 1990. Translation of “Algorithmes adaptatifs et approximations stochastiques”, Masson, Paris 1987 
MR 1082341 | 
Zbl 0752.93073[4] Fernandéz–Gaucherand E., Marcus S. I.: 
Risk–Sensitive Optimal Control of Hidden Markov Models: Structural Results. Technical Report TR 96-79, Institute for Systems Research, University of Maryland, College Park, Maryland 1996 
Zbl 0891.93087[5] Fernandéz–Gaucherand E., Arapostathis A., Marcus S. I.: 
Analysis of an adaptive control scheme for a partially observed controlled Markov chain. IEEE Trans. Automat. Control 38 (1993), 6, 987–993 
DOI 10.1109/9.222316 | 
MR 1227213 | 
Zbl 0786.93089[6] Krishnamurthy, V, Moore J. B.: 
On–line estimation of hidden Markov model parameters based on the. IEEE Trans. Signal Processing 41 (1993), 8, 2557–2573 
Zbl 0825.93742[7] Gland F. Le, Mevel L.: 
Geometric Ergodicity in Hidden Markov Models. Technical Report No. 1028, IRISA/INRIA, Campus de Beaulieu, Renees 1996 
Zbl 0941.93053