Previous |  Up |  Next

Article

Title: Optimal control of nonlinear delay systems with implicit derivative and quadratic performance (English)
Author: Balachandran, K.
Author: Rajagopal, N.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 2
Year: 1999
Pages: [225]-233
Summary lang: English
.
Category: math
.
Summary: The existence of optimal control for nonlinear delay systems having an implicit derivative with quadratic performance criteria is proved. The results are established by an iterative technique and using the Darbo fixed point theorem. (English)
Keyword: optimal control
Keyword: nonlinear delay system
Keyword: Darboux’s fixed-point theorem
MSC: 47N20
MSC: 49J15
MSC: 49J25
MSC: 49K25
MSC: 93C10
idZBL: Zbl 1274.49002
idMR: MR1690948
.
Date available: 2009-09-24T19:25:11Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135283
.
Reference: [1] Athans M., Falb P. L.: Optimal Control.McGraw–Hill, New York 1966 Zbl 0186.22501, MR 0204181
Reference: [2] Balachandran K.: Global relative controllability of nonlinear systems with time varying multiple delays in control.Internat. J. Control 46 (1987), 1, 193–200 Zbl 0629.93010, MR 0895702, 10.1080/00207178708933892
Reference: [3] Balachandran K.: Existence of optimal control for nonlinear multiple–delay systems.Internat. J. Control 49 (1989), 3, 769–775 Zbl 0681.49001, MR 0990313, 10.1080/00207178908559666
Reference: [4] Balachandran K., Dauer J. P.: Controllability of nonlinear systems via fixed point theorems.J. Optim. Theory Appl. 53 (1987), 1, 345–352 Zbl 0596.93010, MR 0891093, 10.1007/BF00938943
Reference: [5] Balachandran K., Ramaswamy R. S.: Optimal control for nonlinear multiple delay systems with quadratic performance.Journal A 27 (1986), 1, 37–40 Zbl 0583.93027
Reference: [6] Balachandran K., Somasundaram D.: Existence of optimal control for nonlinear systems with quadratic performance.J. Austral. Math. Soc. Ser. B 29 (1987), 249–255 Zbl 0623.49002, MR 0905808, 10.1017/S0334270000005750
Reference: [7] Dacka C.: On the controllability of a class of nonlinear systems.IEEE Trans. Automat. Control 25 (1980), 3, 263–266 Zbl 0439.93006, MR 0567386, 10.1109/TAC.1980.1102287
Reference: [8] Dauer J. P., Balachandran K.: Existence of optimal control for nonlinear systems with an implicit derivative.Optimal Control Appl. Methods 24 (1993), 1, 145–152 MR 1228381, 10.1002/oca.4660140206
Reference: [9] Malek–Zavarei M.: Suboptimal control systems with multiple delays.J. Optim. Theory Appl. 30 (1980), 4, 621–633 MR 0572160, 10.1007/BF01686725
Reference: [10] Sadovskii B. J.: Limit compact and condensing operators.Russian Math. Surveys 27 (1972), 1, 85–155 MR 0428132, 10.1070/RM1972v027n01ABEH001364
Reference: [11] Yamamoto Y.: Optimal control for nonlinear systems with quadratic performance.J. Math. Anal. Appl. 64 (1978), 2, 348–353 Zbl 0378.49024, MR 0479536, 10.1016/0022-247X(78)90042-2
.

Files

Files Size Format View
Kybernetika_35-1999-2_7.pdf 922.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo