Previous |  Up |  Next

Article

Title: Decentralized stabilization and strong stabilization of a bicoprime factorized plant (English)
Author: Baksi, D.
Author: Patel, V. V.
Author: Datta, K. B.
Author: Ray, G. D.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 2
Year: 1999
Pages: [235]-253
Summary lang: English
.
Category: math
.
Summary: In this paper, a necessary and sufficient condition for decentralized stabilizability for expanding construction of large scale systems is established which involves the computation of blocking zeros and testing a rational function for sign changes at these blocking zeros. Results for the scalar as also multivariable cases are presented and a systematic procedure for designing the stabilizing controller is also outlined. The proposed theory is applicable to a wider class of systems than those for which existing methods can be used. There are a few matrix identities established in this paper which are of independent interest in Control Theory. (English)
Keyword: decentralized stabilization
Keyword: large scale system
Keyword: bi-coprime factorized plant
Keyword: control theory
MSC: 93A14
MSC: 93A15
MSC: 93D15
MSC: 93D21
idZBL: Zbl 1274.93239
idMR: MR1690949
.
Date available: 2009-09-24T19:25:18Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135284
.
Reference: [1] Davison E. J., Ózgüner U.: The expanding system problem.Systems Control Lett. 1 (1982), 255–260 MR 0670208, 10.1016/S0167-6911(82)80008-X
Reference: [2] Desoer C. A., Liu R. W., Murray J., Saeks R.: Feedback system design: The fractional representation approach to analysis and synthesis.IEEE Trans. Automat. Control 25 (1980), 399–412 Zbl 0442.93024, MR 0571749, 10.1109/TAC.1980.1102374
Reference: [3] Francis B. A.: A Course in $H_\infty $ Control Theory.Springer–Verlag, Berlin 1987
Reference: [4] Ikeda M.: Decentralized control of large scale systems.In: Three Decades of Mathematical System Theory: A Collection of Surveys on the Occasion of the Fiftieth Birthday of Jan C. Willems (H. Nijmeijer and J. M. Schumacher, eds.), Springer–Verlag, Berlin 1989 Zbl 0683.93009, MR 1025792
Reference: [5] Ikeda M., Siljak D. D.: On decentrally stabilizable large–scale systems.Automatica 16 (1980), 331–334 Zbl 0432.93004, MR 0575188, 10.1016/0005-1098(80)90042-4
Reference: [6] Saeks R., DeCarlo R. A.: Interconnected Dynamical Systems.Marcel Dekker, New York 1981
Reference: [7] Siljak D. D.: Large Scale Dynamic Systems: Stability and Structure.North Holland, New York 1978 Zbl 0384.93002, MR 0595867
Reference: [8] Tan X. L., Ikeda M.: Decentralized stabilization for expanding construction of large scale systems.IEEE Trans. Automat. Control 35 (1990), 644–651 Zbl 0800.93065, MR 1055494, 10.1109/9.53543
Reference: [9] Vidyasagar M.: Control System Synthesis: A Factorization Approach.MIT Press, Cambridge, MA 1985 Zbl 0655.93001, MR 0787045
Reference: [10] Youla D. C., Bongiorno J. J., Lu C. N.: Single loop feedback stabilization of linear multivariable dynamical plants.Automatica 10 (1974), 155–173 Zbl 0276.93036, MR 0490293, 10.1016/0005-1098(74)90021-1
.

Files

Files Size Format View
Kybernetika_35-1999-2_8.pdf 2.369Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo