Previous |  Up |  Next

Article

Title: Contiguity and LAN-property of sequences of Poisson processes (English)
Author: Liese, Friedrich
Author: Lorz, Udo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 3
Year: 1999
Pages: [281]-308
Summary lang: English
.
Category: math
.
Summary: Using the concept of Hellinger integrals, necessary and sufficient conditions are established for the contiguity of two sequences of distributions of Poisson point processes with an arbitrary state space. The distribution of logarithm of the likelihood ratio is shown to be infinitely divisible. The canonical measure is expressed in terms of the intensity measures. Necessary and sufficient conditions for the LAN-property are formulated in terms of the corresponding intensity measures. (English)
Keyword: Poisson point process
Keyword: local asymptotic normality
Keyword: Hellinger integral
Keyword: likelihood ratio
MSC: 60G55
MSC: 62B10
MSC: 62G20
MSC: 62M07
idZBL: Zbl 1274.60156
idMR: MR1704668
.
Date available: 2009-09-24T19:25:54Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135289
.
Reference: [1] Brown M.: Discrimination of Poisson processes.Ann. Math. Statist. 42 (1971), 773–776 Zbl 0235.60044, MR 0343360, 10.1214/aoms/1177693429
Reference: [2] Csiszár I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität Markoffscher Ketten.Publ. Math. Inst. Hungar. Acad. Sci., Ser. A 8 (1963), 85–108 MR 0164374
Reference: [3] Jacod J., Shiryaev A. N.: Limit Theorems for Stochastic Processes.Springer–Verlag, Berlin 1987 Zbl 1018.60002, MR 0959133
Reference: [4] Karr A. F.: Point Processes and their Statistical Inference.Marcel Dekker, New York 1986 Zbl 0733.62088, MR 0851982
Reference: [5] Kutoyants, Yu. A.: Parameter Estimation for Stochastic Processes.Helderman, Berlin 1984 Zbl 0542.62073, MR 0777685
Reference: [6] Kutoyants, Yu. A.: Statistical inference for spatial Poisson processes.Lab. de Stat. et Proc. Univ. du Maine, Le Mans, manuscript of forthcoming monography (1996) MR 1644620
Reference: [7] LeCam L.: Locally asymptotically normal families of distributions.Univ. Calif. Publ. Statist. 3 (1960), 37–98 MR 0126903
Reference: [8] Liese F.: Eine informationstheoretische Bedingung für die Äquivalenz unbegrenzt teilbarer Punktprozesse.Math. Nachr. 70 (1975), 183–196 Zbl 0339.60052, MR 0478321, 10.1002/mana.19750700116
Reference: [9] Liese F.: Hellinger integrals of diffusion processes.Statistics 17 (1986), 63–78 Zbl 0598.60042, MR 0827946, 10.1080/02331888608801912
Reference: [10] Liese F., Vajda I.: Convex Statistical Distances.Teubner, Leipzig 1987 Zbl 0656.62004, MR 0926905
Reference: [11] Lorz U.: Sekundärgröen Poissonscher Punktprozesse – Grenzwertsätze und Abschätzungen der Konvergenzgeschwindigkeit.Rostock. Math. Kolloq. 29 (1986), 99–111 MR 0863258
Reference: [12] Lorz U.: Beiträge zur Statistik unbegrenzt teilbarer Felder mit unabhängigen Zuwächsen.Dissertation, Univ. Rostock 1987 Zbl 0682.62072
Reference: [13] Lorz U., Heinrich L.: Normal and Poisson approximation of infinitely divisible distribution function.Statistics 22 (1991), 627– 649 MR 1128489, 10.1080/02331889108802342
Reference: [14] Mecke J.: Stationäre zufällige Maße auf lokal–kompakten Abelschen Gruppen.Z. Wahrsch. verw. Geb. 9 (1967), 36–58 MR 0228027, 10.1007/BF00535466
Reference: [15] Petrov V. V.: Sums of Independent Random Variables.Akademie–Verlag, Berlin 1975 Zbl 1125.60024, MR 0388499
Reference: [16] Strasser H.: Mathematical Theory of Statistics.de Gruyter, Berlin 1985 Zbl 0594.62017, MR 0812467
Reference: [17] Vajda I.: Theory of Statistical Inference and Information.Kluwer, Dordrecht 1989 Zbl 0711.62002
.

Files

Files Size Format View
Kybernetika_35-1999-3_2.pdf 3.515Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo