Previous |  Up |  Next

Article

Title: On noncooperative nonlinear differential games (English)
Author: Roubíček, Tomáš
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 4
Year: 1999
Pages: [487]-498
Summary lang: English
.
Category: math
.
Summary: Noncooperative games with systems governed by nonlinear differential equations remain, in general, nonconvex even if continuously extended (i. e. relaxed) in terms of Young measures. However, if the individual payoff functionals are “enough” uniformly convex and the controlled system is only “slightly” nonlinear, then the relaxed game enjoys a globally convex structure, which guarantees existence of its Nash equilibria as well as existence of approximate Nash equilibria (in a suitable sense) for the original game. (English)
Keyword: noncooperative games
Keyword: Nash equilibria
Keyword: differential games
Keyword: globally convex structure
MSC: 49N70
MSC: 91A10
MSC: 91A23
idZBL: Zbl 1274.91073
idMR: MR1723581
.
Date available: 2009-09-24T19:27:31Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135303
.
Reference: [1] Balder E. J.: On a useful compactification for optimal control problems.J. Math. Anal. Appl. 72 (1979), 391–398 Zbl 0434.49007, MR 0559376, 10.1016/0022-247X(79)90235-X
Reference: [2] Balder E. J.: A general denseness result for relaxed control theory.Bull. Austral. Math. Soc. 30 (1984), 463–475 Zbl 0544.49008, MR 0766804, 10.1017/S0004972700002185
Reference: [3] Balder E. J.: Generalized equilibrium results for games with incomplete information.Math. Oper Res. 13 (1988), 265–276 Zbl 0658.90104, MR 0942618, 10.1287/moor.13.2.265
Reference: [4] Bensoussan A.: Points de Nash dans le cas de fonctionnelles quadratiques et jeux differentiels lineaires a $n$ personnes.SIAM J. Control 12 (1974), 460–499 Zbl 0254.90066, MR 0384185, 10.1137/0312037
Reference: [5] Gabasov R., Kirillova F.: Qualitative Theory of Optimal Processes.Nauka, Moscow 1971 Zbl 0339.49002, MR 0527204
Reference: [7] Kindler J.: Equilibrium point theorems for two-person games.SIAM J. Control Optim. 22 (1984), 671–683 Zbl 0545.90102, MR 0755136, 10.1137/0322042
Reference: [8] Krasovskiĭ N. N., Subbotin A. I.: Game Theoretical Control Problems.Springer, Berlin 1988 Zbl 0649.90101, MR 0918771
Reference: [9] Lenhart S., Protopopescu V., Stojanovic S.: A minimax problem for semilinear nonlocal competitive systems.Appl. Math. Optim. 28 (1993), 113–132 Zbl 0789.49009, MR 1218250, 10.1007/BF01182976
Reference: [10] Nash J.: Non–cooperative games.Ann. of Math. 54 (1951), 286–295 Zbl 0045.08202, MR 0043432, 10.2307/1969529
Reference: [11] Nikaidô H., Isoda K.: Note on non–cooperative equilibria.Pacific J. Math. 5 (1955), 807–815 MR 0073910, 10.2140/pjm.1955.5.807
Reference: [12] Nikol’skiĭ M. S.: On a minimax control problem.In: Optimal Control and Differential Games (L. S. Pontryagin, ed.), Proc. Steklov Inst. Math. 1990, pp. 209–214
Reference: [13] Nowak A. S.: Correlated relaxed equilibria in nonzero–sum linear differential games.J. Math. Anal. Appl. 163 (1992), 104–112 Zbl 0778.90102, MR 1144709, 10.1016/0022-247X(92)90281-H
Reference: [14] Patrone F.: Well–posedness for Nash equilibria and related topics.In: Recent Developments in Well–Posed Variational Problems (R. Lucchetti and J. Revalski, eds.), Kluwer, 1995, pp. 211–227 Zbl 0849.90131, MR 1351746
Reference: [15] Roubíček T.: Relaxation in Optimization Theory and Variational Calculus.W. de Gruyter, Berlin 1997 MR 1458067
Reference: [16] Roubíček T.: Noncooperative games with elliptic systems.In: Proc. IFIP WG 7.2 Conf. Control of P.D.E., Chemnitz 1998, accepted MR 1723990
Reference: [17] Sainte–Beuve M.-F.: Some topological properties of vector measures with bounded variations and its applications.Ann. Mat. Pura Appl. 116 (1978), 317–379 MR 0506985
Reference: [18] Schmidt W. H.: Maximum principles for processes governed by integral equations in Banach spaces as sufficient optimality conditions.Beiträge zur Analysis 17 (1981), 85–93 Zbl 0478.49023, MR 0663274
Reference: [19] Tan K. K., Yu J., Yuan X. Z.: Existence theorems of Nash equilibria for non–cooperative $n$–person games.Internat. J. Game Theory 24 (1995), 217–222 Zbl 0837.90126, MR 1349753, 10.1007/BF01243152
Reference: [20] Tijs S. H.: Nash equilibria for noncooperative $n$-person game in normal form.SIAM Rev. 23 (1981), 225–237 MR 0618639, 10.1137/1023038
Reference: [21] Warga J.: Optimal Control of Differential and Functional Equations.Academic Press, New York 1972 Zbl 0253.49001, MR 0372708
Reference: [22] Young L. C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations.Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937), 212–234 Zbl 0019.21901
.

Files

Files Size Format View
Kybernetika_35-1999-4_7.pdf 1.876Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo