Previous |  Up |  Next

Article

Title: Necessary and sufficient conditions for the oscillation of forced nonlinear second order delay difference equation (English)
Author: Thandapani, E.
Author: Ramuppillai, L.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 4
Year: 1999
Pages: [499]-506
Summary lang: English
.
Category: math
.
Summary: In this paper the authors give necessary and sufficient conditions for the oscillation of solutions of nonlinear delay difference equations of Emden– Fowler type in the form $\Delta ^2y_{n-1}+q_ny_{\sigma (n)}^\gamma =g_n$, where $\gamma $ is a quotient of odd positive integers, in the superlinear case $(\gamma >1)$ and in the sublinear case $(\gamma <1)$. (English)
Keyword: oscillation
Keyword: nonlinear delay difference equation
Keyword: Emden-Fowler type
MSC: 34K40
MSC: 39A05
MSC: 39A10
MSC: 39A12
MSC: 39A21
idZBL: Zbl 1274.39022
idMR: MR1723577
.
Date available: 2009-09-24T19:27:39Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135304
.
Reference: [1] Agarwal R. P.: Difference Equations and Inequalities.Marcel Dekker, New York 1992 Zbl 0952.39001, MR 1155840
Reference: [2] Gaef J. R., Spikes P. W.: Boundedness and asymptotic behavior of solutions of a forced difference equation.Internat. J. Math. Math. Sci. 17 (1994), 397–400 MR 1261087, 10.1155/S0161171294000542
Reference: [3] Gaef J. R., Spikes P. W.: Asymptotic decay of oscillatory solutions of forced nonlinear difference equations.Dynamic Systems Appl. 3 (1994), 95–102 MR 1261052
Reference: [4] Hooker J. W.: Some differences between difference equations and differential equations.J. Differential Equations Appl. 2 (1996), 219–226 Zbl 0856.34036, MR 1384571, 10.1080/10236199608808056
Reference: [5] Hooker J. W., Patula W. T.: A second order nonlinear difference equation: oscillation and asymptotic behavior.J. Math. Anal. Appl. 91 (1983), 9–29 Zbl 0508.39005, MR 0688528, 10.1016/0022-247X(83)90088-4
Reference: [6] Kordonis I. G. E., Philos, Ch. G., Purnaras I. K.: On the oscillation of some linear difference equations with periodic coefficients.J. Comput. Appl. Math. 84 (1997), 219–241 Zbl 0885.39006, MR 1475376, 10.1016/S0377-0427(97)00126-X
Reference: [7] Lakshmikantham V., Trigiante D.: Theory of Difference Equations: Numerical Methods and Applications.Academic Press, New York 1988 Zbl 1014.39001, MR 0939611
Reference: [8] Moore R. E.: Computational Functional Analysis.(Ellis Harwood Series.) Halstred Press, New York 1985 Zbl 1127.46001, MR 0783431
Reference: [9] Patula W. T.: Growth, oscillation and comparison theorems for second order linear difference equation.SIAM J. Math. Anal. 10 (1979), 1272–1279 MR 0547812, 10.1137/0510114
Reference: [10] Popenda J.: On the oscillation of solutions of difference equations.Demonstratio Math. 28 (1995), 575–586 Zbl 0846.39006, MR 1362187
Reference: [11] Szmanda B.: Nonoscillation, oscillation and growth of solutions of nonlinear difference equations of second order.J. Math. Anal. Appl. 109 (1985), 22–30 Zbl 0589.39003, MR 0796040, 10.1016/0022-247X(85)90174-X
Reference: [12] Thandapani E., Pandian S.: On the oscillatory behavior of solutions of second order nonlinear difference equation.Z. Anal. Anwendungen 13 (1993), 347–358
Reference: [13] Thandapani E., Ramuppillai L.: Oscillation theorems for certain class of nonlinear difference equations.Z. Anal. Anwendungen 17 (1998), 1–10 Zbl 0906.39008, MR 1632500, 10.4171/ZAA/836
Reference: [14] Zafer A.: On the existence of positive solutions and oscillation of solutions of higher order differenced equations with forcing terms.Comput. Math. Appl., to appear MR 1666123
Reference: [15] Zhang B. G.: Oscillation and asymptotic behavior of second order difference equations.J. Math. Anal. Appl. 173 (1993), 58–68 Zbl 0780.39006, MR 1205909, 10.1006/jmaa.1993.1052
.

Files

Files Size Format View
Kybernetika_35-1999-4_8.pdf 929.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo