Full entry |
PDF
(1.6 MB)
Feedback

nonlinear delay system; state delayed feedback

References:

[1] Banks H. T., Kappel F.: **Spline approximations for functional differential equations**. J. Differential Equations 34 (1979), 496–522 DOI 10.1016/0022-0396(79)90033-0 | MR 0555324 | Zbl 0422.34074

[2] Bensoussan A., Prato G. Da, Delfour M. C., Mitter S. K.: **Representation and Control of Infinite Dimensional Systems**. Birkhäuser, Boston 1992 MR 2273323 | Zbl 1117.93002

[3] Germani A., Manes C., Pepe P.: **Numerical solution for optimal regulation of stochastic hereditary systems with multiple discrete delays**. In: Proc. of 34th IEEE Conference on Decision and Control, Louisiana 1995. Vol. 2, pp. 1497–1502

[4] Germani A., Manes C., Pepe P.: **Linearization of input–output mapping for nonlinear delay systems via static state feedback**. In: Proc. of CESA IMACS Multiconference on Computational Engineering in Systems Applications, Lille 1996, Vol. 1, pp. 599–602

[5] Germani A., Manes C., Pepe P.: **Linearization and decoupling of nonlinear delay systems**. In: Proc. of 1998 American Control Conference, ACC’98, Philadelphia 1998, Vol. 3, pp. 1948–1952

[6] Germani A., Manes C., Pepe P.: **Tracking, model matching, disturbance decoupling for a class of nonlinear delay systems**. In: Proc. of Large Scale Systems IFAC Conference, LSS’98, Patrasso 1998, Vol. 1, pp. 423–429

[7] Germani A., Manes C., Pepe P.: **A state observer for nonlinear delay systems**. In: Proc. of 37th IEEE Conference on Decision and Control, Tampa 1998

[8] Gibson J. S.: **Linear quadratic optimal control of hereditary differential systems: Infinite–dimensional Riccati equations and numerical approximations**. SIAM J. Control Optim. 31 (1983), 95–139 DOI 10.1137/0321006 | MR 0688442 | Zbl 0557.49017

[9] Isidori A.: **Nonlinear Control Systems**. Third edition. Springer–Verlag, London 1995 MR 1410988 | Zbl 0931.93005

[10] Lehman B., Bentsman J., Lunel S. V., Verriest E. I.: **Vibrational control of nonlinear time lag systems with bounded delay: Averaging theory, stabilizability, and transient behavior**. IEEE Trans. Automat. Control 5 (1994), 898–912 DOI 10.1109/9.284867 | MR 1274337 | Zbl 0813.93044

[11] Marquez L. A., Moog C. H., Velasco M.: **The structure of nonlinear time delay system**. In: Proc. of 6th Mediterranean Conference on Control and Automation, Alghero 1998

[12] Moog C. H., Castro R., Velasco M.: **The disturbance decoupling problem for nonlinear systems with multiple time–delays: Static state feedback solutions**. In: Proc. of CESA IMACS Multiconference on Computational Engineering in Systems Applications, Vol. 1, pp. 596–598, Lille 1996

[13] Moog C. H., Castro R., Velasco M.: **Bi–causal solutions to the disturbance decoupling problem for time–delay nonlinear systems**. In: Proc. of 36th IEEE Conference on Decision and Control, Vol. 2, pp. 1621–1622, San Diego, 1997

[14] Pandolfi L.: **The standard regulator problem for systems with input delays**. An approach through singular control theory. Appl. Math. Optim. 31 (1995), 2, 119–136 DOI 10.1007/BF01182784 | MR 1309302 | Zbl 0815.49006

[15] Pepe P.: **Il Controllo LQG dei Sistemi con Ritardo**. PhD Thesis, Department of Electrical Engineering, L’Aquila 1996

[16] Wu J. W., Hong K.-S.: **Delay–independent exponential stability criteria for time–varying discrete delay systems**. IEEE Trans. Automat. Control 39 (1994), 4, 811–814 DOI 10.1109/9.286258 | MR 1276779 | Zbl 0807.93055