Previous |  Up |  Next


Title: Application of a second order VSC to nonlinear systems in multi-input parametric-pure-feedback form (English)
Author: Ferrara, Antonella
Author: Giacomini, Luisa
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 1
Year: 2000
Pages: [63]-75
Summary lang: English
Category: math
Summary: The use of a multi-input control design procedure for uncertain nonlinear systems expressible in multi-input parametric-pure feedback form to determine the control law for a class of mechanical systems is described in this paper. The proposed procedure, based on the well-known backstepping design technique, relies on the possibility of extending to multi-input uncertain systems a second order sliding mode control approach recently developed, thus reducing the computational load, as well as increasing robustness. (English)
Keyword: multi-input control design
Keyword: nonlinear system
MSC: 34H05
MSC: 70Q05
MSC: 93B12
MSC: 93B51
MSC: 93C10
MSC: 93C35
idZBL: Zbl 1249.93101
idMR: MR1760889
Date available: 2009-09-24T19:31:09Z
Last updated: 2015-03-26
Stable URL:
Reference: [1] Bartolini G., Ferrara A., Giacomini L., Usai E.: A combined backstepping/second order sliding mode approach to control a class of nonlinear systems.In: Proc. IEEE International Workshop on Variable Structure Systems. Tokyo 1996
Reference: [2] Bartolini G., Ferrara A., Usai E.: Applications of a suboptimal discontinuous control algorithm for uncertain second order systems.Internat. J. Robust Nonlin. Control 7 (1997), 299–320 MR 1445164, 10.1002/(SICI)1099-1239(199704)7:4<299::AID-RNC279>3.0.CO;2-3
Reference: [3] Bartolini G., Ferrara A., Usai E.: Chattering avoidance by second–order sliding modes control.IEEE Trans. Automat. Control 34 (1998), 2, 241–246 MR 1605966, 10.1109/9.661074
Reference: [4] Bartolini G., Ferrara A., Usai E., Utkin V. I.: Second order chattering–free sliding mode control for some classes of multi–input uncertain nonlinear systems.In: Proc. of the 6th IEEE Mediterranean Conference on Control and Systems. Alghero 1998
Reference: [5] Diong B. M., Medanic J. V.: Simplex–type variable structure controllers for systems with non–matching disturbances and uncertainties.Internat. J. Control 68 (1997), 625–656 Zbl 0882.93010, MR 1689669, 10.1080/002071797223550
Reference: [6] Kanellakopoulos I., Kokotovic P. V., Morse A. S.: Systematic design of adaptive controllers for feedback linearizable systems.IEEE Trans. Automat. Control 36 (1991), 1241–1253 Zbl 0768.93044, MR 1130494, 10.1109/9.100933
Reference: [7] Kirk D. E.: Optimal control theory.Prentice Hall, Englewood Cliffs, N.J. 1970
Reference: [8] Kokotović P. V., Krstić M., Kanellakopoulos I.: Nonlinear and Adaptive Control Design.Wiley, New York 1995
Reference: [9] Levant A.: Sliding order and sliding accuracy in sliding mode control.Internat. J. Control 58 (1993), 1247–1263 Zbl 0789.93063, MR 1250057, 10.1080/00207179308923053
Reference: [10] Levant A.: Higher order sliding: collection of design tools.In: European Control Conference, Bruxelles 1997
Reference: [11] Nam K., Arapostathis A.: A model reference adaptive control scheme for pure-feedback non–linear systems.IEEE Trans. Automat. Control 33 (1988), 803–811 MR 0953874, 10.1109/9.1308
Reference: [12] Seto D., Annaswamy A. M., Baillieul J.: Adaptive control of a class of nonlinear systems with a triangular structure.IEEE Trans. Automat. Control 39 (1994), 1411–1428 MR 1283912, 10.1109/9.299624
Reference: [13] Spong M. W., Vidyasagar M.: Robot Dynamics and Control.Wiley, New York 1989
Reference: [14] Su R., Hunt L. R.: A canonical expansion for nonlinear systems.IEEE Trans. Automat. Control 31 (1986), 670–673 Zbl 0618.93028, MR 0844926, 10.1109/TAC.1986.1104358
Reference: [15] Utkin V. I.: Sliding Modes in Control and Optimization.Springer–Verlag, Berlin 1992 Zbl 0748.93044, MR 1295845


Files Size Format View
Kybernetika_36-2000-1_7.pdf 1.609Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo