Previous |  Up |  Next


Title: Design of an adaptive controller of LQG type: spline-based approach (English)
Author: Guy, Tatiana V.
Author: Kárný, Miroslav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 2
Year: 2000
Pages: [255]-262
Summary lang: English
Category: math
Summary: The paper presents an alternative approach to the design of a hybrid adaptive controller of Linear Quadratic Gaussian (LQG) type for linear stochastic controlled system. The approach is based on the combination standard building blocks of discrete LQG adaptive controller with the non-standard technique of modelling of a controlled system and spline approximation of involved signals. The method could be of interest for control of systems with complex models, in particular distributed parameter systems. (English)
Keyword: hybrid adaptive controller
Keyword: linear stochastic controlled system
MSC: 41A15
MSC: 93B50
MSC: 93C05
MSC: 93C40
MSC: 93E03
idZBL: Zbl 1249.93103
idMR: MR1760027
Date available: 2009-09-24T19:32:33Z
Last updated: 2015-03-26
Stable URL:
Reference: [1] Boor C. De: Practical Guide to Splines.Springer–Verlag, New York 1978 Zbl 0987.65015
Reference: [2] Guy T. V., Kárný M.: Spline–based hybrid adaptive controller.In: Modelling, Identification and Control (M. H. Hamza, ed.), Acta Press, Anaheim, pp. 118–122
Reference: [3] Jazwinski A. M.: Stochastic Processes and Filtering Theory.Academic Press, New York 1970 Zbl 0203.50101
Reference: [4] Kárný M., Halousková A., Böhm J. R.Kulhavý, Nedoma P.: Design of linear quadratic adaptive control: Theory and algorithm for practice.Supplement to Kybernetika 21 (1985), Nos. 3–6
Reference: [5] Kárný M., Halousková A., Nagy I.: Modelling, identification and adaptive control of cross–direction basis weight of paper sheets.In: Internat. Conf. CONTROL 88, Oxford 1988, pp. 159–164
Reference: [6] Kárný M., Nagy I., Böhm J., Halousková A.: Design of spline–based selftuners.Kybernetika 26 (1990), 17–30
Reference: [7] Korn G. A., Korn T. M.: Mathematical Handbook for Scientists and Engineers.McGraw–Hill, New York 1968 Zbl 0535.00032, MR 0220560
Reference: [8] Kornejchuk N. P.: Splines in the Approximation Theory (in Russian).Nauka, Moscow 1978
Reference: [9] Kulhavý R.: Restricted exponential forgetting in real–time identification.Automatica 23 (1987), 5, 598–600 Zbl 0634.93073, MR 0912352, 10.1016/0005-1098(87)90054-9
Reference: [10] Ljung L.: System Identification: Theory for the User.Prentice–Hall, London 1987 Zbl 0615.93004


Files Size Format View
Kybernetika_36-2000-2_7.pdf 1.116Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo