Previous |  Up |  Next


Title: Optimal multivariable PID regulator (English)
Author: Mošna, Jiří
Author: Pešek, Pavel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 2
Year: 2000
Pages: [243]-253
Summary lang: English
Category: math
Summary: A continuous version of optimal LQG design under presence of Wiener disturbances is solved for MIMO controlled plant. Traditional design tools fail to solve this problem due to unstability of the augmented plant. A class of all optimality criteria, which guarantee existence of an asymptotical solution, is defined using a plant deviation model. This class is utilized in design of an optimal state and an error feedback regulator which is presented here. The resultant optimal error regulator is interpreted as an optimal multivariable matrix PID regulator. (English)
Keyword: PID regulator
Keyword: MIMO controlled plant
MSC: 49N10
MSC: 93B51
MSC: 93D15
MSC: 93E20
idZBL: Zbl 1249.93177
idMR: MR1760026
Date available: 2009-09-24T19:32:26Z
Last updated: 2015-03-26
Stable URL:
Reference: [1] Ackermann J.: Sampled–Data Control Systems, Analysis and Synthesis, Robust System Design.Springer–Verlag, Berlin 1985 Zbl 0639.93001, MR 0699111
Reference: [2] Åström K. J., Wittenmark B.: Computer–Controlled Systems, Theory and Design.Prentice–Hall, Englewood Cliffs, N. J. 1984
Reference: [3] Bryson A. E., Ho, Yu–Chi: Applied Optimal Control.Gin and Company, Waltham, MA 1969
Reference: [4] Dai L., Lin W.: Solutions to the output regulation problem of linear singular systems.Automatica 32 (1996), 1713–1718 Zbl 0873.93047, MR 1427141, 10.1016/S0005-1098(96)80008-2
Reference: [5] Francis B. A., Wohman W. M.: The internal model principle of control theory.Automatica 12 (1976), 457–465 MR 0429257, 10.1016/0005-1098(76)90006-6
Reference: [6] Kalman R. E.: Canonical structure of linear dynamical systems.SIAM J. Control 1 (1962), 596–600 Zbl 0249.34005, MR 0138865
Reference: [7] Kwanty G. H., Young D. K.: Variable structure servomechanism design and applications to overspeed protection control.Automatica 18 (1982), 385–400 MR 0667558, 10.1016/0005-1098(82)90068-1
Reference: [8] Mošna J., Melichar J., Pešek P.: Optimality versus complexity: Optimal matrix PID regulator.In: Preprints of the 3rd European IEEE Workshop CMP’98, Prague 1998, pp. 139–143
Reference: [9] Mošna J., Pešek: Sampled–data control: Optimal matrix PID regulator.In: The Eighteenth IASTED International Conference on Modeling, Identification and Control, Innsbruck 1999, pp. 305–308
Reference: [10] Vidyasagar M.: Control System Synthesis, A Factorization Approach.The MIT Press, Cambridge, MA 1987 Zbl 0655.93001, MR 0787045
Reference: [11] Štecha J.: Robustness versus control quality in asymptotic reference tracking.In: Proceedings of the Fifteenth IASTED International Conference Modeling, Identification and Control, Innsbruck 1996, pp. 292–294
Reference: [12] Štecha J.: Robust and nonrobust tracking.Kybernetika 34 (1998), 203–216
Reference: [13] Young K. D.: Deviation variables in linear multivariable servomechanisms.IEEE Trans. Automat. Control AC-29 (1984), 567–569 Zbl 0532.93034, 10.1109/TAC.1984.1103585
Reference: [14] Žampa P.: On a new system theory and its new paradigms.In: Cybernetics and Systems’96, Austria Society for Cybernetic Studies, Vienna 1996, Volume 1, pp. 3–7
Reference: [15] Žampa P., Mošna J., Prautsch P.: New approach to optimal control theory.In: The 2nd IFAC Workshop on New Trends in Design of Control Systems, Smolenice 1997


Files Size Format View
Kybernetika_36-2000-2_6.pdf 1.872Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo