Previous |  Up |  Next


declarative semantics; fuzzy logic; fuzzy similarity
In this paper we argue that for fuzzy unification we need a procedural and declarative semantics (as opposed to the two valued case, where declarative semantics is hidden in the requirement that unified terms are syntactically – letter by letter – identical). We present an extension of the syntactic model of unification to allow near matches, defined using a similarity relation. We work in Hájek’s fuzzy logic in narrow sense. We base our semantics on a formal model of fuzzy logic programming extended by fuzzy similarities and axioms of predicate calculus with equality. Rules are many valued implications and not Horn clauses. We prove soundness and completeness of fuzzy similarity based unification.
[1] Arcelli F., Formato, F., Gerla G.: Similitude-based unification as a foundation of fuzzy logic programming. In: Logic Programming and Soft Computing in AI (T. P. Martin and F. Arcelli Fontana, eds.), Research Studies Press, Wiley, New York 1998
[2] Baldwin J. F.: Support logic programming. In: Fuzzy Sets – Theory and Applications (A. Jones, ed.), D. Reidel 1986, pp. 133–170 Zbl 0641.68142
[4] Dubois D., Lang, J., Prade H.: Fuzzy sets in approximate reasoning, Part 2: Logical approaches. In: Foundations of Fuzzy Reasoning. Special Memorial Volume; 25 years of fuzzy sets: Attribute to Professor Lotfi Zadeh. First issue (I. B. Turksen, D. Dubois, H. Prade, and R. R. Yager eds.), Fuzzy Sets and Systems 40 (1991), 203–244 MR 1103661
[6] Gottwald S.: Fuzzy Sets and Fuzzy Logic. Vieweg, Wiesbaden 1993 MR 1218623 | Zbl 1088.03024
[7] Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht 1998 MR 1900263 | Zbl 1007.03022
[9] Kriško P., Marcinčák P., Mihók P., Sabol, J., Vojtáš P.: Low retrieval remote querying dialogue with fuzzy conceptual, syntactical and linguistical unification. In: Proc. FQAS’98 Flexible Query Answering Systems (T. Andreasen et al, eds., Lecture Notes in Computer Science 1495), Springer Verlag, Berlin 1998, pp. 215–226
[10] Lloyd J. W.: Foundations of Logic Programming. Springer Verlag, Berlin 1987 MR 0911272 | Zbl 0807.68001
[11] Martelli A., Montanari U.: An efficient unification algorithm. ACM Trans. Programming Languages and Systems 4 (1982), 258–282 DOI 10.1145/357162.357169 | Zbl 0478.68093
[12] Pedrycz W.: Fuzzy Control and Fuzzy Systems. Report 82/14, Dept. Math., Delft Univ. of Technology Zbl 0839.93006
[13] Petry F. E.: Fuzzy Databases – Principles and Applications. Kluwer, Dordrecht 1996 Zbl 0853.68086
[14] Robinson J. A.: A machine-oriented logic based on the resolution principle. J. Assoc. Comp. Mach. 12 (1965), 23–41 DOI 10.1145/321250.321253 | MR 0170494 | Zbl 0139.12303
[15] Emden E. van: Quantitative deduction and its fixpoint theory. J. Logic Programming 1 (1986), 37–53 DOI 10.1016/0743-1066(86)90003-8 | MR 0836013
[16] Virtanen H. E.: Linguistic logic programming. In: Logic Programming and Soft Computing (T. P. Martin and F. Arcelli Fontana, eds., Research Press Studies Lim.), Wiley, New York 1998 MR 1655064
[17] Vojtáš P.: Fuzzy reasoning with tunable $t$-operators. J. Advanced Comp. Intelligence 2 Fuji Press (1998), 121–127
[18] Vojtáš P.: Fuzzy logic programming. Submitted to Proc. Workshop on Fuzzy Logic at FSTA, for Fuzzy Sets and Systems MR 1860856 | Zbl 1015.68036
[19] Vojtáš P.: Uncertain reasoning with floating connectives. In: Proc. AIT’96 Artificial Intelligence Techniques Brno (J. Žižka, ed.), Technical University Brno, PC–Dir Publ. 1996, pp. 31–40
Partner of
EuDML logo