Previous |  Up |  Next


fuzzy data mining; fuzzy decision trees
Fuzzy data mining by means of the fuzzy decision tree method enables the construction of a set of fuzzy rules. Such a rule set can be associated with a database as a knowledge base that can be used to help answering frequent queries. In this paper, a study is done that enables us to show that classification by means of a fuzzy decision tree is equivalent to the generalized modus ponens. Moreover, it is shown that the decision taken by means of a fuzzy decision tree is more stable when observation evolves.
[1] Agrawal R., Imielinski, T., Swami A.: Mining association rules between sets of items in large databases. In: Proc. ACM-SIGMOD Internat. Conference on Management of Data, Washington DC 1993, pp. 207–216
[2] Agrawal R., Imielinski, T., Swami A.: Database mining: A performance perspective. IEEE Trans. on Knowledge and Data Engineering 5 (1993), 6, 914–925 DOI 10.1109/69.250074
[3] Bouchon–Meunier B.: La logique floue et ses applications. Collection Vie Artificielle. Addison Wesley France, 1995
[4] Bouchon–Meunier B., Rifqi, M., Bothorel S.: Towards general measures of comparison of objects. Fuzzy Sets and Systems 84 (1996), 2, 143–153 DOI 10.1016/0165-0114(96)00067-X | MR 1416692 | Zbl 0917.94028
[5] Bouchon–Meunier B., Marsala, C., Ramdani M.: Learning from imperfect data. In: Fuzzy Information Engineering: a Guided Tour of Applications (D. Dubois, H. Prade, and R. R. Yager, eds.), Wiley, New York 1997, pp. 139–148
[6] Bouchon–Meunier B., Marsala C.: Learning fuzzy decision rules. In: Fuzzy Sets in Approximate Reasoning and Information Systems, volume 3 of Handbook of Fuzzy Sets, chapter 4 (D. Dubois J. Bezdek and H. Prade, eds.), Kluwer, Dordrecht 1999 MR 1799005 | Zbl 0952.68124
[7] Chen, I-M. A.: Query answering using discovered rules. In: Proc. 12th Internat. Conference on Data Engineering (S. Y. W. Su, ed.), IEEE Computer Society Press, New Orleans 1996, pp. 402–411
[8] Cios K. J., Pedrycz, W., Swiniarski R. W.: Data Mining – Methods for Knowledge Discovery. (Engineering and Computer Science.) Kluwer, Dordrecht 1998 Zbl 0912.68199
[9] Driankov D., Hellendoorn, H., Reinfrank M.: An Introduction to Fuzzy Control. Springer Verlag, Berlin 1993 Zbl 0851.93001
[10] Dubois D., Prade H.: A unifying view of comparison indices in a fuzzy set-theoretic framework. In: Fuzzy Set and Possibility Theory (R. R. Yager, ed.), Pergamon Press 1982, pp. 3–13
[11] Dubois D., Prade, H., Testemale C.: Weighted fuzzy pattern matching. Fuzzy Sets and Systems 28 (1988), 3, 313–331 DOI 10.1016/0165-0114(88)90038-3 | MR 0976671 | Zbl 0658.94026
[12] Dubois D., Mo, X., Prade H.: Fuzzy-valued variables and fuzzy discrimination trees in pattern-directed inference. In: Eighth International Congress of Cybernetics and Systems, New York 1990
[13] Dubois D., Mo, X., Prade H.: Fuzzy discrimination trees. In: Fuzzy Engineering toward Human Friendly Systems. Proc. Internat. Fuzzy Engineering Symposium IFES’91, volume 1, Yokohama 1991, pp. 250–260 MR 1221133
[14] Fayyad U. M., Piatetsky–Shapiro, G., Smyth P.: From data mining to knowledge discovery in databases. AI Magazine 17 (1996), 3, 37–54
[15] Hu X., Cercone N.: Mining knowledge rules from databases: A rough set approach. In: Proc. 12th Internat. Conference on Data Engineering (S. Y. W. Su, ed.), IEEE Computer Society Press, New Orleans 1996, pp. 96–105
[16] Lent B., Swami, A., Widom J.: Clustering association rules. In: Proc. 13th Internat. Conference on Data Engineering, IEEE Computer Society Press, Birmingham 1997, pp. 220–231
[17] Marsala C., Bouchon-Meunier B.: Fuzzy partioning using mathematical morphology in a learning scheme. In: Proc. 5th IEEE Internat. Conference on Fuzzy Systems, volume 2, New Orleans 1996, pp. 1512–1517
[18] Marsala C.: Apprentissage inductif en présence de données imprécises: construction et utilisation d’arbres de décision flous. PhD Thesis, Université Pierre et Marie Curie, Paris 1998
[19] Marsala C.: Application of fuzzy rule induction to data mining. In: Proc. 3rd Internat. Conference FQAS’98 – LNAI 1495 (T. Andreasen, H. Christiansen, and H. L. Larsen, eds.), Springers, Roskilde 1998, pp. 260–271
[20] Marsala C., Ramdani M., Toullabi, M., Zakaria D.: Fuzzy decision trees applied to the recognition of odors. In: Proc. IPMU’98 Conference, volume 1, Editions EDK, Paris 1998, pp. 532–539
[21] Marsala C., Bigolin N. Martini: Spatial data mining with fuzzy decision trees. In: Proc. Internat. Conference on Data Mining (N. F. F. Ebecken, ed.), WIT Press, Rio de Janeiro 1998, pp. 235–248
[22] Marsala C., Bouchon–Meunier B.: An adaptable system to construct fuzzy decision trees. In: Proc. NAFIPS’99 (North American Fuzzy Information Processing Society), New York 1999, pp. 223–227
[23] Marsala C., Bouchon–Meunier, B., Ramer A.: Hierarchical model for discrimination measures. In: Proc. IFSA’99 World Congress, Taiwan 1999, pp. 339–343
[24] Mo X.: Compilation de bases de connaissances avec prise en compte de l’imprécision et de l’incertitude. PhD Thesis, Université Paul Sabatier, Toulouse 1990
[25] Nguyen H. T., Kreinovitch, V., Tolbert D.: On robustness of fuzzy logics. In: Proc. FUZZ-IEEE Internat. Conference, volume 1, San Francisco 1993, pp. 543–547
[26] Nguyen H. T., Kreinovitch, V., Tolbert D.: A measure of average sensitivity for fuzzy logics. Internat. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 2 (1994), 4, 361–375 DOI 10.1142/S0218488594000304 | MR 1309606
[27] Pedrycz, Yubazaki, Ohtani,, Hirota: Robustness and sensitivity in fuzzy computational structures. In: Proc. IFSA’91 Conference, Brussels 1991, pp. 197–200
[28] Py J.-J.: Éléments d’étude de la sensibilité des modèles flous. Université Paris IX, 1997
[29] Quinlan J. R.: Induction of decision trees. Machine Learning 1 (1986), 1, 86–106 DOI 10.1007/BF00116251
[30] Quinlan J. R.: Improved use of continuous attributes in C4. 5. J. Artificial Intelligence Research 4 (1996), 3, 77–90 Zbl 0900.68112
[31] Ramdani M.: Système d’Induction Formelle à Base de Connaissances Imprécises. PhD Thesis, Université P. et M. Curie, Paris 1994
[32] Rifqi M.: Mesures de comparaison, typicalité et classification d’objets flous : théorie et pratique. PhD Thesis, Université P. et M. Curie, Paris 1996
[33] Shekhar S., Hamidzadeh B., Kohli, A., Coyle M.: Learning transformation rules for semantic query optimization: A data-driven approach. IEEE Trans. on Knowledge and Data Engineering 5 (1993), 6, 950–964 DOI 10.1109/69.250077
[34] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning, part 3. Inform. Sci. 9 (1976), 43–80 DOI 10.1016/0020-0255(75)90017-1 | MR 0386371
[35] Zadeh L. A.: The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets and Systems 11 (1983), 199–227.Reprinted in: Fuzzy Sets and Applications: selected papers by L. A. Zadeh (R. R. Yager, S. Ovchinnikov, R. M. Tong and H. T. Nguyen, eds.), pp. 413–441 MR 0727205 | Zbl 0553.68049
Partner of
EuDML logo