Previous |  Up |  Next


initial-boundary-value problem; parallel virtual machine (PVM)
A generalization of the spatially one-dimensional parallel pipe-line algorithm for solution of the initial-boundary-value problem using explicit difference method to the two-dimensional case is presented. The suggested algorithm has been verified by implementation on a workstation-cluster running under PVM (Parallel Virtual Machine). Theoretical estimates of the speed-up are presented.
[1] Burrage K.: Parallel methods for initial value problems. Appl. Numer. Math. 11 (1993), 5–25 DOI 10.1016/0168-9274(93)90037-R | MR 1197147 | Zbl 0781.65060
[2] Crank J., Nicolson P.: A practical method for numerical evaluation of solutions of PDEs of the heat-conduction type. Proc. Camb. Phil. Soc. 43 (1947), 60–67 DOI 10.1017/S0305004100023197 | MR 0019410
[3] Freeman T. L., Phillips C.: Parallel Numerical Algorithms. Prentice Hall, Englewood Cliffs, N.J. 1992 MR 1211414 | Zbl 0783.65097
[4] Kogge P. M.: Parallel solution of recurrence problems. IBM J. Res. Develop. 2 (1974), 18, 138–148 DOI 10.1147/rd.182.0138 | MR 0341806 | Zbl 0307.65080
[5] Ortega J. M., Voigt R. G.: Solution of PDE on Vector and Parallel Computers. SIAM, Philadelphia, 1985 MR 0846844
[6] Pavluš M.: Schwarz algorithm for solution of a quasiparabolic equation. Vestnik Moskov. Univ. 4 (1992), 15, 27–35 MR 1215472
[7] Peaceman D. W., Rachford H. H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3 (1955), 28–41 DOI 10.1137/0103003 | MR 0071874 | Zbl 0067.35801
[8] Smith G. D.: Numerical Solution of PDE. Finite Difference Methods. Second edition. Clarendon Press, Oxford 1978 MR 0509636
[9] Tyrtyshnikov E. E.: Parallelization of some numerical methods. In: Numerical Solution of Partial Differential Equation, Košice 1992
[10] Vajteršic M.: Algorithms for Elliptic Problems. Efficient Sequential and Parallel Solvers. VEDA, Bratislava 1988 MR 1246333 | Zbl 0809.65101
Partner of
EuDML logo