Previous |  Up |  Next

Article

Title: Parallel algorithm for spatially one-and two-dimensional initial-boundary-value problem for a parabolic equation (English)
Author: Purcz, Pavol
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 2
Year: 2001
Pages: [171]-181
Summary lang: English
.
Category: math
.
Summary: A generalization of the spatially one-dimensional parallel pipe-line algorithm for solution of the initial-boundary-value problem using explicit difference method to the two-dimensional case is presented. The suggested algorithm has been verified by implementation on a workstation-cluster running under PVM (Parallel Virtual Machine). Theoretical estimates of the speed-up are presented. (English)
Keyword: initial-boundary-value problem
Keyword: parallel virtual machine (PVM)
MSC: 65M06
MSC: 65Y05
MSC: 68W10
idZBL: Zbl 1265.68355
idMR: MR1839227
.
Date available: 2009-09-24T19:38:19Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135399
.
Reference: [1] Burrage K.: Parallel methods for initial value problems.Appl. Numer. Math. 11 (1993), 5–25 Zbl 0781.65060, MR 1197147, 10.1016/0168-9274(93)90037-R
Reference: [2] Crank J., Nicolson P.: A practical method for numerical evaluation of solutions of PDEs of the heat-conduction type.Proc. Camb. Phil. Soc. 43 (1947), 60–67 MR 0019410, 10.1017/S0305004100023197
Reference: [3] Freeman T. L., Phillips C.: Parallel Numerical Algorithms.Prentice Hall, Englewood Cliffs, N.J. 1992 Zbl 0783.65097, MR 1211414
Reference: [4] Kogge P. M.: Parallel solution of recurrence problems.IBM J. Res. Develop. 2 (1974), 18, 138–148 Zbl 0307.65080, MR 0341806, 10.1147/rd.182.0138
Reference: [5] Ortega J. M., Voigt R. G.: Solution of PDE on Vector and Parallel Computers.SIAM, Philadelphia, 1985 MR 0846844
Reference: [6] Pavluš M.: Schwarz algorithm for solution of a quasiparabolic equation.Vestnik Moskov. Univ. 4 (1992), 15, 27–35 MR 1215472
Reference: [7] Peaceman D. W., Rachford H. H.: The numerical solution of parabolic and elliptic differential equations.J. Soc. Indust. Appl. Math. 3 (1955), 28–41 Zbl 0067.35801, MR 0071874, 10.1137/0103003
Reference: [8] Smith G. D.: Numerical Solution of PDE.Finite Difference Methods. Second edition. Clarendon Press, Oxford 1978 MR 0509636
Reference: [9] Tyrtyshnikov E. E.: Parallelization of some numerical methods.In: Numerical Solution of Partial Differential Equation, Košice 1992
Reference: [10] Vajteršic M.: Algorithms for Elliptic Problems.Efficient Sequential and Parallel Solvers. VEDA, Bratislava 1988 Zbl 0809.65101, MR 1246333
.

Files

Files Size Format View
Kybernetika_37-2001-2_6.pdf 1.605Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo