Full entry |
PDF
(1.5 MB)
Feedback

time-delay system; feedback; spectrum; right unimodular transformations; Invariant factors assignment; spectral controllability; Bezout ring; Volterra equation

References:

[1] Brethé D.: **Contribution à l’étude de la stabilisation des systèmes linéaires à retards**. Thèse de Doctorat, École Centrale de Nantes et Université de Nantes, 1997

[2] Brethé D., Loiseau J. J.: **An effective algorithm for finite spectrum assignment of single-input systems with delays**. Math. Comput. Simulation 45 (1998), 339–348 DOI 10.1016/S0378-4754(97)00113-4 | MR 1622412 | Zbl 1017.93506

[3] Eising R.: **Realization and stabilization of 2-D systems**. IEEE Trans. Automat. Control 23 (1978), 793–799 DOI 10.1109/TAC.1978.1101861 | MR 0507790 | Zbl 0397.93022

[4] Glüsing–Lüerßen H.: **A behavioral approach to delay-differential systems**. SIAM J. Control Optim. 35 (1997), 480–499 DOI 10.1137/S0363012995281869 | MR 1436634 | Zbl 0876.93022

[5] Habets L.: **Algebraic and Computational Aspects of Time–delay Systems**. Ph. D. Thesis, Eindhoven 1994 MR 1276720 | Zbl 0804.93031

[6] Kailath T.: **Linear Systems**. Prentice Hall, Englewood Cliffs, N. J. 1980 MR 0569473 | Zbl 0870.93013

[7] Kamen E. W.: **On an algebraic theory of systems defined by convolution operators**. Math. Systems Theory 9 (1974), 57–74 DOI 10.1007/BF01698126 | MR 0395953

[8] Kamen E. W., Khargonekar P. P., Tannenbaum A.: **Proper stable Bezout factorizations and feedback control of linear time-delay systems**. Internat. J. Control 43 (1986), 837–857 DOI 10.1080/00207178608933506 | MR 0828360 | Zbl 0599.93047

[9] Kaplansky I.: **Elementary divisors and modules**. Trans. American Mathematical Society 66 (1949), 464–491 DOI 10.1090/S0002-9947-1949-0031470-3 | MR 0031470 | Zbl 0036.01903

[10] Kučera V.: **Analysis and Design of Discrete Linear Control Systems**. Prentice–Hall, London, and Academia, Prague 1991 MR 1182311 | Zbl 0762.93060

[11] Leborgne D.: **Calcul différentiel complexe**. Presses Universitaires de France, Paris, 1991 MR 1091546 | Zbl 0731.30001

[12] Loiseau J. J.: **Algebraic tools for the control and stabilization of time–delay systems**. In: Proc. 1st IFAC Workshop on Linear Time Delay Systems, Grenoble 1998, pp. 235–249

[13] Manitius A. Z., Olbrot A. W.: **Finite spectrum assignment problem for systems with delays**. IEEE Trans. Automat. Control 35 (1979), 541–553 DOI 10.1109/TAC.1979.1102124 | MR 0538808 | Zbl 0425.93029

[14] Morf M., Lévy B. C., Kung S.-Y.: **New results in 2-D systems theory**. Part I: 2-D polynomial matrices, factorizations, and coprimeness. Proc. IEEE 65 (1977), 861–872

[15] Olbrot A. W.: **Stabilizability, detectability and spectrum assignment for linear systems with general time delays**. IEEE Trans. Automat. Control 23 (1978), 887–890 DOI 10.1109/TAC.1978.1101879 | MR 0528786

[16] Rosenbrock H. H.: **State–space and Multivariable Theory**. Wiley, New York 1970 MR 0325201 | Zbl 0246.93010

[17] Assche V. Van, Dambrine M., Lafay J.-F., Richard J.-P.: **Some problems arising in the implementation of distributed–delay control laws**. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999

[18] Watanabe K.: **Finite spectrum assignment and observer for multivariable systems with commensurate delays**. IEEE Trans. Automat. Control 31 (1986), 543–550 DOI 10.1109/TAC.1986.1104336 | MR 0839083 | Zbl 0596.93009