Previous |  Up |  Next


asymptotic stability; linear neutral system
This paper focuses on the problem of uniform asymptotic stability of a class of linear neutral systems including some constant delays and time-varying cone-bounded nonlinearities. Sufficient stability conditions are derived by taking into account the weighting factors describing the nonlinearities. The proposed results are applied to the stability analysis of a class of lossless transmission line models.
[1] Abolinia V. E., Myshkis A. D.: Mixed problem for an almost linear hyperbolic system in the plane (in Russian). Mat. Sb. 12 (1960), 423–442
[2] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear matrix inequalities in system and control theory. SIAM Stud. Appl. Math. 15 (1994) MR 1284712 | Zbl 0816.93004
[3] Brayton R. K.: Nonlinear oscillations in a distributed network. Quart. Appl. Math. 24 (1976), 289–301
[4] Brayton R. K., Miranker W. L.: Oscillations in a distributed network. Arch. Rational Mech. Anal. 17 (1964), 358–376 MR 0168864
[5] Chen J.: On computing the maximal delay intervals for stability of linear delay systems. IEEE Trans. Automat. Control 40 (1995), 1087–1093 DOI 10.1109/9.388690 | MR 1345968 | Zbl 0840.93074
[6] Cooke K. L., Krumme D. W.: Differential-difference equations and nonlinear partial-boundary value problems for linear hyperbolic partial differential equations. J. Math. Anal. Appl. 24 (1968), 372–387 DOI 10.1016/0022-247X(68)90038-3 | MR 0232089
[7] Ghaoui L. El, Niculescu S.-I.: Robust decision problems in engineering: An LMI approach. In: Advances in Linear Matrix Inequality Method in Control, SIAM, Philadelphia, 1999 MR 1736563
[8] Els’golts’ L. E., Norkin S. B.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments (Math. Sci. Engrg. 105). Academic Press, New York 1973 MR 0352647
[9] Halanay A., Răsvan, Vl.: Stability radii for some propagation models. IMA J. Math. Control Inform. 14 (1997) 95–107 DOI 10.1093/imamci/14.1.95 | MR 1446966 | Zbl 0873.93067
[10] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations (Appl. Math. Sci. 99). Springer–Verlag, New York 1993 MR 1243878
[11] Hale J. K., Infante E. F., Tseng F. S. P.: Stability in linear delay equations. J. Math. Anal. Appl. 105 (1985), 533–555 DOI 10.1016/0022-247X(85)90068-X | MR 0778486
[12] Kolmanovskii V. B., Myshkis A.: Applied Theory of Functional Differential Equations. Kluwer, Dordrecht 1992 MR 1256486
[13] Lakshmikantam V., Leela S.: Differential and integral inequalities. Volume II. Academic Press, New York 1969
[14] Malek–Zavarei M., Jamshidi M.: Time Delay Systems: Analysis, Optimization and Applications (Systems and Control Series 9). North–Holland, Amsterdam 1987 MR 0930450
[15] Niculescu S.-I.: Time-delay Systems. Qualitative Aspects on Stability and Stabilization (in French). Diderot Eds. Paris, ‘Nouveaux Essais’ Series, Paris 1997 Zbl 1235.93006
[16] Niculescu S.-I., Brogliato B.: On force measurements time-delays in control of constrained manipulators. In: Proc. IFAC on System Structure and Control, Nantes 1995, pp. 266–271
[17] Niculescu S.-I., Verriest E. I., Dugard, L., Dion J.-M.: Stability and robust stability of time-delay systems: A guided tour. In: Stability and Control of Time-delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes on Control and Information Sciences 228), Springer–Verlag, London 1998 MR 1482571 | Zbl 0914.93002
[18] Răsvan, Vl.: Absolute Stability of Time Lag Control Systems (in Romanian). Ed. Academiei, Bucharest 1975 (Russian revised edition by Nauka, Moscow, 1983) MR 0453048
[19] Răsvan, Vl.: Dynamical systems with lossless propagation and neutral functional differential equations. In: Proc. MTNS’98, Padoue 1998, pp. 527–531
[20] Slemrod M., Infante E. F.: Asymptotic stability criteria for linear systems of differential difference equations of neutral type and their discrete analogues. J. Math. Anal. Appl. 38 (1972), 399–415 DOI 10.1016/0022-247X(72)90098-4 | MR 0306678
[21] Verriest E. I., Fan M. K. H., Kullstam J.: Frequency domain robust stability criteria for linear delay systems. In: Proc. 32nd IEEE Conference on Decision and Control, San Antonio 1993, pp. 3473–3478
[22] Verriest E. I.: Riccati type conditions for robust stability of delay systems (preprint). Presented at MTNS’96, St. Louis 1996
[23] Verriest E. I.: Robust stability of time-varying systems with unknown bounded delays. In: Proc. 33rd IEEE Conference on Decision and Control, Lake Buena Vista 1994, pp. 417–422
[24] Verriest E. I., Niculescu S.-I.: Delay-independent stability of linear neutral systems: A Riccati equation approach. In: Stability and Control of Time-delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes on Control and Information Sciences 228), Springer–Verlag, London 1998 MR 1482573 | Zbl 0923.93049
Partner of
EuDML logo