Previous |  Up |  Next

Article

Title: Decentralized control of interconnected linear systems with delayed states (English)
Author: de Souza, Carlos E.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 3
Year: 2001
Pages: [309]-323
Summary lang: English
.
Category: math
.
Summary: This paper addresses the problems of stability analysis and decentralized control of interconnected linear systems with constant time-delays in the state of each subsystems as well as in the interconnections. We develop delay- dependent methods of stability analysis and decentralized stabilization via linear memoryless state-feedback. The proposed methods are given in terms of linear matrix inequalities. Extensions of the decentralized stabilization result to more complex control problems, such as decentralized static output feedback, decentralized ${\cal H}_{\infty }$ control, decentralized robust stabilization, and decentralized robust ${\cal H}_{\infty }$ control are also discussed. (English)
Keyword: time-delay
Keyword: stability analysis
Keyword: state-feedback
Keyword: interconnected linear systems
Keyword: robust stabilization
Keyword: decentralized control
MSC: 93A14
MSC: 93B36
MSC: 93C23
MSC: 93D09
idZBL: Zbl 1265.93006
idMR: MR1859088
.
Date available: 2009-09-24T19:39:47Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135411
.
Reference: [1] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in Systems and Control Theory.SIAM, Philadelphia 1994 MR 1284712
Reference: [2] Chen Y. H.: Decentralized robust control for large-scale uncertain systems: A design based on the bound of uncertainty.ASME J. Dynamic Systems Measurement and Control 114 (1992), 1–9 Zbl 0767.93002, 10.1115/1.2896502
Reference: [3] Crusius C. A. R., Trofino A.: Sufficient LMI conditions for output feedback control problems.IEEE Trans. Automat. Control 44 (1999), 1053–1057 Zbl 0956.93028, MR 1690555, 10.1109/9.763227
Reference: [4] Souza C. E. de, Li X.: Delay-dependent robust ${\mathcal H}_{\infty }$ control of uncertain linear state-delayed systems.Automatica 35 (1999), 1313–1321 MR 1829975, 10.1016/S0005-1098(99)00025-4
Reference: [5] Gong Z., Wen, C., Mital D. P.: Decentralized robust controller design for a class of interconnected uncertain systems with unknown bound of uncertainty.IEEE Trans. Automat. Control 41 (1996), 850–854 Zbl 1034.93558, MR 1391781, 10.1109/9.506237
Reference: [6] Hale J., Lunel S. M. V.: Introduction to Functional Differential Equations.Springer–Verlag, New York 1993 Zbl 0787.34002, MR 1243878
Reference: [7] Hmamed A.: Note on the stability of large-scale systems with delays.Internat. J. Systems Sci. 17 (1986), 1083–1087 Zbl 0585.93047, MR 0844944, 10.1080/00207728608926870
Reference: [8] Ho S.-J., Horng I.-R., Chou J.-H.: Decentralized stabilization of large-scale systems with structured uncertainties.Internat. J. Systems Sci. 23 (1992), 425–434 Zbl 0747.93006, MR 1151022, 10.1080/00207729208949218
Reference: [9] Ikeda M., Siljak D. D.: Decentralized stabilization of linear time-varying systems.IEEE Trans. Automat. Control 25 (1980), 106–107 Zbl 0446.93039, MR 0561351, 10.1109/TAC.1980.1102237
Reference: [10] Lee T. N., Radovic U. L.: Decentralized stabilization of linear continuous and discrete-time systems with delays in interconnections.IEEE Trans. Automat. Control 33 (1988), 757–761 Zbl 0649.93055, MR 0950798, 10.1109/9.1293
Reference: [11] Li X., Souza C. E. de: Robust stabilization and ${\mathcal H}_{\infty }$ control for uncertain linear time-delay systems.In: Proc. 13th IFAC World Congress, San Francisco 1996, pp. 113–118
Reference: [12] Li X., Souza C. E. de: Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach.IEEE Trans. Automat. Control 42 (1997), 144–1148 Zbl 0889.93050, MR 1469075
Reference: [13] Li X., Souza C. E. de: Criteria for robust stability and stabilization of uncertain linear systems with state delay.Automatica 33 (1997), 1657–1662 MR 1481824, 10.1016/S0005-1098(97)00082-4
Reference: [14] Sandell N. R., Varaiya P., Athans, M., Safonov M. G.: Survey of decentralized control methods for large scale systems.IEEE Trans. Automat. Control 23 (1978), 108–128 Zbl 0385.93001, MR 0490108, 10.1109/TAC.1978.1101704
Reference: [15] Schoen G. M., Geering H. P.: A note on robustness bounds for large-scale time-delay systems.Internat. J. Systems Sci. 26 (1995), 2441–2444 Zbl 0850.93691, 10.1080/00207729508929181
Reference: [16] Siljak D. D.: Large–Scale Dynamic Systems: Stability and Structure.North–Holland, New York 1978 Zbl 0384.93002, MR 0595867
Reference: [17] Su J. H.: Further results on the robust stability of linear systems with a single time delay.Systems Control Lett. 23 (1994), 375–379 Zbl 0805.93045, MR 1303587, 10.1016/0167-6911(94)90071-X
Reference: [18] Su T. J., Huang C. G.: Robust stability of delay dependence for linear uncertain systems.IEEE Trans. Automat. Control 37 (1992), 1656–1659 Zbl 0770.93077, MR 1188782, 10.1109/9.256406
Reference: [19] Suh I. H., Bien Z.: A note on the stability of large scale systems with delays.IEEE Trans. Automat. Control 27 (1982), 256–258 Zbl 0469.93008, MR 0680343, 10.1109/TAC.1982.1102817
Reference: [20] Wang S. H., Davison E. J.: On the stabilization of decentralized control systems.IEEE Trans. Automat. Control AC-18 (1973), 473–478 Zbl 0347.93030, MR 0441480, 10.1109/TAC.1973.1100362
Reference: [21] Wang W.-J., Cheng C.-F.: Robustness of perturbed large-scale systems with local constant state feedback.Internat. J. Control 50 (1989), 373–384 Zbl 0683.93026, MR 1014791, 10.1080/00207178908953367
Reference: [22] Xu B., Fu, Y., Bai L.: Further results on robust bounds for large-scale time-delay systems with structured and unstructured uncertainties.Internat. J. Systems Sci. 27 (1996), 1491–1495 Zbl 0874.93079, 10.1080/00207729608929356
.

Files

Files Size Format View
Kybernetika_37-2001-3_8.pdf 2.356Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo