Previous |  Up |  Next

Article

Title: Control of distributed delay systems with uncertainties: a generalized Popov theory approach (English)
Author: Ivanescu, Dan
Author: Niculescu, Silviu-Iulian
Author: Dion, Jean-Michel
Author: Dugard, Luc
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 3
Year: 2001
Pages: 325-343
Summary lang: English
.
Category: math
.
Summary: The paper deals with the generalized Popov theory applied to uncertain systems with distributed time delay. Sufficient conditions for stabilizing this class of delayed systems as well as for $\gamma $-attenuation achievement are given in terms of algebraic properties of a Popov system via a Liapunov–Krasovskii functional. The considered approach is new in the context of distributed linear time-delay systems and gives some interesting interpretations of $H^\infty $ memoryless control problems in terms of Popov triplets and associated objects. The approach is illustrated via numerical examples. Dedicated to Acad. Vlad Ionescu, in memoriam. (English)
Keyword: Popov theory
Keyword: time-delay system
Keyword: uncertainty
MSC: 93C23
MSC: 93C41
MSC: 93D10
MSC: 93D30
idZBL: Zbl 1265.93197
idMR: MR1859089
.
Date available: 2009-09-24T19:39:55Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135412
.
Reference: [1] Cheres E., Gutman, S., Palmor Z. J.: Robust stabilization of uncertain dynamic system including state delay.IEEE Trans. Automat. Control 34 (1989), 1199–1203 MR 1020938, 10.1109/9.40753
Reference: [2] Dion J.-M., Dugard L., Ivanescu D., Niculescu S.-I., Ionescu V.: Robust $H_{\infty }$ control of time-delay systems: A generalized Popov theory approach.In: Perspectives in Control Theory and applications, Springer–Verlag, Berlin 1998, pp. 61–82 Zbl 0976.93066
Reference: [3] Dugard L., (eds.) E. I. Verriest: Stability and Control of Time–Delay Systems.(Lecture Notes in Computer Science 228.) Springer–Verlag, London 1997 Zbl 0901.00019, MR 1482570
Reference: [4] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations.(Applied Mathematical Sciences 99.) Springer–Verlag, Berlin 1991 MR 1243878
Reference: [5] Ionescu V., Niculescu S.-I., Dion J.-M., Dugard, L., Li H.: Generalized Popov theory applied to state-delayed systems.In: Proc. IFAC Conference on System Structure and Control, Nantes 1998, pp. 645–650
Reference: [6] Ionescu V., Niculescu S.-I., Woerdeman H.: On ${\mathcal L}_2$ memoryless control of time-delay systems.In: Proc. 36th IEEE Conference on Decision and Control, San Diego 1997, pp. 1344–1349
Reference: [7] Ionescu V., Oară, C., Weiss M.: Generalized Riccati Theory.Wiley, New York 1998 Zbl 0915.34024
Reference: [8] Ionescu V., Weiss M.: Continuous and discrete-time Riccati theory: a Popov function approach.Linear Algebra Appl. 193 (1993), 173–209 MR 1240278
Reference: [9] Ivanescu D., Niculescu S.-I., Dion J.-M., Dugard L.: Control of Distributed Varying Delay Systems Using Generalized Popov Theory.Internal Note, LAG–98
Reference: [10] Kojima A., Uchida, K., Shimemura E.: Robust stabilization of uncertain time delay systems via combined internal-external approach.IEEE Trans. Automat. Control 38 (1993), 373–378 Zbl 0773.93066, MR 1206835, 10.1109/9.250497
Reference: [11] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equations.(Mathematics in Science and Engineering 180.) Academic Press, New York 1986 Zbl 0593.34070, MR 0860947
Reference: [12] Lee J. H., Kim S. W., Kwon W. H.: Memoryless $H_\infty $ controllers for state delayed systems.IEEE Trans. Automat. Control 39 (1994), 159–162 MR 1258692, 10.1109/9.273356
Reference: [13] Niculescu S.-I., Souza C. E. de, Dion J.-M., Dugard L.: Robust ${\mathcal H}_\infty $ memoryless control for uncertain linear systems with time-varying delay.In: 3rd European Control Conference, Rome 1995, pp. 1814–1818
Reference: [14] Niculescu S.-I., Ionescu V.: On delay-independent stability criteria: A matrix pencil approach.IMA J. Math. Control Inform. 14 (1997), 299–306 Zbl 0886.93056, MR 1467584, 10.1093/imamci/14.3.299
Reference: [15] Niculescu S.-I., Ionescu V., Ivănescu D., Dion J.-M., Dugard L.: On generalized Popov theory for delay systems.In: 6th IEEE Mediteranean Conference, Sardaigne 1998 and Kybernetika 36 (2000), 2–20 MR 1760884
Reference: [16] Niculescu S.-I., Ionescu, V., Woerdeman H.: On the Popov theory for some classes of time-delay systems: A matrix pencil approach.In: MTNS’98, Padova 1998
Reference: [17] Oară C.: Proper deflating subspaces: properties, algorithmes and applications.Numer. Algorithms 7 (1994), 355–377 MR 1283105, 10.1007/BF02140690
Reference: [18] Xie L., Souza C. E. de: Robust stabilization and disturbance attenuation for uncertain delay system.In: Proc. 2nd European Control Conference, Groningen 1993, pp. 667–672
.

Files

Files Size Format View
Kybernetika_37-2001-3_9.pdf 2.585Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo