Previous |  Up |  Next

Article

Title: Receding-horizon control of constrained uncertain linear systems with disturbances (English)
Author: Chisci, Luigi
Author: Falugi, Paola
Author: Zappa, Giovanni
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 2
Year: 2002
Pages: [169]-185
Summary lang: English
.
Category: math
.
Summary: The paper addresses receding-horizon (predictive) control for polytopic discrete-time systems subject to input/state constraints and unknown but bounded disturbances. The objective is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. The latter goal is achieved by exploiting robust invariant sets under linear and nonlinear control laws. Tradeoffs between maximizing the initial feasibility region and guaranteeing ultimate boundedness in the smallest invariant region are investigated. (English)
Keyword: constrained linear system
Keyword: disturbances
Keyword: discrete-time control system
MSC: 93B50
MSC: 93B51
MSC: 93C05
MSC: 93C55
MSC: 93D21
idZBL: Zbl 1265.93107
idMR: MR1916449
.
Date available: 2009-09-24T19:44:43Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135453
.
Reference: [1] Badgwell T. A.: Robust model predictive control.Internat. J. Control 68 (1997), 797–818 Zbl 0889.93025, MR 1689731, 10.1080/002071797223343
Reference: [2] Barmisch R. R.: Necessary and sufficient conditions for quadratic stabilizability of an uncertain system.J. Optim. Theory Appl. 46 (1985), 399–408 MR 0797844, 10.1007/BF00939145
Reference: [3] Bemporad A., Morari M.: Robust model predictive control: a survey.In: Robustness in Identification and Control (A. Garulli, A. Tesi and A. Vicino, eds., Lecture Notes in Control and Information Sciences 245), Springer–Verlag, Berlin 1999, pp. 207–226 Zbl 0979.93518, MR 1705197
Reference: [4] Blanchini F.: Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov function.IEEE Trans. Automat. Control 39 (1994), 428–433 MR 1265438, 10.1109/9.272351
Reference: [5] Blanchini F.: Set invariance in control.Automatica 35 (1999), 1747–1768 Zbl 0935.93005, MR 1831764, 10.1016/S0005-1098(99)00113-2
Reference: [6] Casavola A., Giannelli, M., Mosca E.: Min-max predictive control strategies for input-saturated polytopic uncertain systems.Automatica 36 (2000), 125–133 Zbl 0939.93506, MR 1833680, 10.1016/S0005-1098(99)00112-0
Reference: [7] Chisci L., Zappa G.: Robustifying a predictive controller against persistent disturbances.In: Proc. European Control Conference’99 (CD ROM), Karlsruhe 1999
Reference: [8] Geromel J. C., Peres P. L. D., Bernussou J.: On a convex parameter space method for linear control design of uncertain systems.SIAM J. Control Optim. 29 (1991), 381–402 Zbl 0741.93020, MR 1092734, 10.1137/0329021
Reference: [9] Gilbert E. G., Tan K. Tin: Linear systems with state and control constraints: the theory and application of maximal output admissible sets.IEEE Trans. Automat. Control 36 (1991), 1008–1021 MR 1122477, 10.1109/9.83532
Reference: [10] Gurvits L.: Stability of discrete linear inclusion.Linear Algebra Appl. 231 (1995), 47–85 Zbl 0845.68067, MR 1361100, 10.1016/0024-3795(95)90006-3
Reference: [11] Keerthi S. S., Gilbert E. G.: Computation of minimum-time feedback control laws for discrete-time systems with state-control constraints.IEEE Trans. Automat. Control 32 (1987), 432–435 Zbl 0611.93023, 10.1109/TAC.1987.1104625
Reference: [12] Keerthi S. S., Gilbert E. G.: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations.J. Optim. Theory Appl. 57 (1988), 265–293 Zbl 0622.93044, MR 0938875, 10.1007/BF00938540
Reference: [13] Kolmanovsky I., Gilbert E. G.: Maximal output admissible sets for discrete-time systems with disturbance inputs.In: Proc. 1995 Amer. Control Conference, Seattle 1995, pp. 1995–1999
Reference: [14] Kothare M. V., Balakrishnan, V., Morari M.: Robust constrained model predictive control using linear matrix inequalities.Automatica 32 (1996), 1361–1379 Zbl 0897.93023, MR 1420038, 10.1016/0005-1098(96)00063-5
Reference: [15] Kouvaritakis B., Rossiter J. A., Schuurmans J.: Efficient robust predictive control.IEEE Trans. Automat. Control 4 (2000), 1545–1549 Zbl 0988.93022, MR 1797413, 10.1109/9.871769
Reference: [16] Lee J. H., Yu Z.: Worst case formulations of model predictive control for systems with bounded parameters.Automatica 33 (1997), 763–781 Zbl 0878.93025, MR 1451899, 10.1016/S0005-1098(96)00255-5
Reference: [17] Rao C., Rawlings J. B., Wright S.: Application of interior point methods to model predictive control.J. Optim. Theory Appl. 99 (1998), 723–757 Zbl 0973.90092, MR 1657971, 10.1023/A:1021711402723
Reference: [18] Rossiter J. A., Kouvaritakis, B., Rice M. J.: A numerically robust state-space approach to stable predictive control strategies.Automatica 34 (1998), 65–73 Zbl 0913.93022, MR 1614093, 10.1016/S0005-1098(97)00171-4
.

Files

Files Size Format View
Kybernetika_38-2002-2_3.pdf 2.418Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo