Previous |  Up |  Next

Article

Title: Rotary inverted pendulum: trajectory tracking via nonlinear control techniques (English)
Author: Ramos-Velasco, Luis E.
Author: Ruiz-León, José J.
Author: Čelikovský, Sergej
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 2
Year: 2002
Pages: [217]-232
Summary lang: English
.
Category: math
.
Summary: The nonlinear control techniques are applied to the model of rotary inverted pendulum. The model has two degrees of freedom and is not exactly linearizable. The goal is to control output trajectory of the rotary inverted pendulum asymptotically along a desired reference. Moreover, the designed controller should be robust with respect to specified perturbations and parameters uncertainties. A combination of techniques based on nonlinear normal forms, output regulation and sliding mode approach is used here. As a specific feature, the approximate solution of the so-called regulator equation is used. The reason is that its exact analytic solution can not be, in general, expressed in the closed form. Though the approximate solution does not give asymptotically decaying tracking error, it provides reasonable bounded error. The performance of the designed feedback regulator is successfully tested via computer simulations. (English)
Keyword: rotary inverted pendulum
Keyword: nonlinear control
Keyword: trajectory tracking
MSC: 70Q05
MSC: 93B35
MSC: 93C10
MSC: 93D15
idZBL: Zbl 1265.93138
idMR: MR1916453
.
Date available: 2009-09-24T19:45:14Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135457
.
Reference: [1] Castillo B., Castro–Linares: On robust regulation via sliding mode for nonlinear system.Systems Control Lett. 24 (1995), 361–371 MR 1325676, 10.1016/0167-6911(94)00039-X
Reference: [2] Čelikovský S., Huang, Jie: Continuous feedback asymptotic output regulation for a class of nonlinear systems having nonstabilizable linearization.In: Proc. 37th IEEE Conference on Decision and Control, Tampa 1998, pp. 3087–3092
Reference: [3] Priscoli F. Delli, Isidori A.: Robust tracking for a class on nonlinear systems.In: 1st European Control Conference, Grenoble 1991, pp. 1814–1818
Reference: [4] Huang J., Rugh W. J.: On a nonlinear multivariable servomechanism problem.Automatica 26 (1990), 963–972 Zbl 0717.93019, MR 1080983, 10.1016/0005-1098(90)90081-R
Reference: [5] Huang J., Rugh W. J.: An approximation method for the nonlinear servomechanism problem.IEEE Trans. Automat. Control 37 (1992), 1395–1398 Zbl 0767.93034, MR 1183102, 10.1109/9.159580
Reference: [6] Isidori A., Byrnes C. I.: Output regulation of nonlinear systems.IEEE Trans. Automat. Control 35 (1990), 131–140 Zbl 0704.93034, MR 1038409, 10.1109/9.45168
Reference: [7] Krener A. J.: The construction of optimal linear and nonlinear regulators.In: Systems, Models and Feedback (A. Isidori and T. J. Tarn, eds.), Birkhäuser, Basel 1992, pp. 301–322 Zbl 0778.49024, MR 1169953
Reference: [8] Kwatny H. G., Kim H.: Variable structure regulation of partially linearizable dynamics.Systems Control Lett. 10 (1990), 67–80 Zbl 0704.93009, MR 1065350, 10.1016/0167-6911(90)90046-W
Reference: [9] Sira–Ramírez H.: A dynamical variable structure control strategy in asymptotic output tracking problems.IEEE Trans. Automat. Control 38 (1993), 615–620 Zbl 0782.93026, MR 1220746, 10.1109/9.250533
Reference: [10] Slotine J. J., Hedrick K.: Robust input-output feedback linearization.Internat. J. Control 57 (1993), 1133–1139 Zbl 0772.93033, MR 1216952, 10.1080/00207179308934435
Reference: [11] Spong M. W., Vidyasagar M.: Robot Dynamics and Control.Wiley, New York 1989
Reference: [12] Utkin V. I.: Sliding Modes in Control and Optimization.Springer–Verlag, Berlin 1992 Zbl 0748.93044, MR 1295845
.

Files

Files Size Format View
Kybernetika_38-2002-2_7.pdf 2.441Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo