Previous |  Up |  Next

Article

Title: Existence of pole-zero structures in a rational matrix equation arising in a decentralized stabilization of expanding systems (English)
Author: Baksi, Dibyendu
Author: Datta, Kanti B.
Author: Ray, Goshaidas
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 2
Year: 2002
Pages: [209]-216
Summary lang: English
.
Category: math
.
Summary: A necessary and sufficient condition for the existence of pole and zero structures in a proper rational matrix equation $T_{2} X = T_{1}$ is developed. This condition provides a new interpretation of sufficient conditions which ensure decentralized stabilizability of an expanded system. A numerical example illustrate the theoretical results. (English)
Keyword: pole-zero structure
Keyword: decentralized stabilizability
Keyword: expanded system
Keyword: rational matrix equation
MSC: 93A14
MSC: 93B55
MSC: 93B60
MSC: 93D15
idZBL: Zbl 1265.93003
idMR: MR1916452
.
Date available: 2009-09-24T19:45:07Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135456
.
Reference: [1] Davison E. J., Chang T. N.: Decentralized controller design using parameter optimization methods.Control Theory and Advanced Technology 2 (1986), 131–154
Reference: [2] Emani-Naeini A., Dooren P. Van: Computation of zeros of linear multivariable systems.Automatica 18 (1982), 415–430 MR 0667559, 10.1016/0005-1098(82)90070-X
Reference: [3] Ikeda M.: Decentralized control of large scale systems.In: Three Decades of Mathematical System Theory (H. Nijmeijer and J. M Schumacher, eds., Lecture Notes in Control and Information Sciences 135), Springer–Verlag, Berlin – Heidelberg – New York 1989 Zbl 0683.93009, MR 1025792
Reference: [4] Kailath T.: Linear Systems.Prentice–Hall, Englewood Cliffs, N.J. 1980 Zbl 0870.93013, MR 0569473
Reference: [5] Siljak D. D.: Large-Scale Dynamic Systems: Stability and Structure.North–Holland, New York 1978 Zbl 0384.93002, MR 0595867
Reference: [6] Tan X. L., Ikeda M.: Decentralized stabilization for expanding construction of large scale systems.IEEE Trans. Automat. Control 35 (1990), 644–651 Zbl 0800.93065, MR 1055494, 10.1109/9.53543
Reference: [7] Unyelioglu K. A., Ozguler A. B.: Decentralized stabilization of multivariable systems using stable proper fractional approach.Communication, Control and Signal Processing (1990), 843–849
Reference: [8] Vardulakis A. I. G., Karcanias N.: On the stable exact model matching problem.Systems Control Lett. 5 (1985), 237–242 Zbl 0559.93018, MR 0784772, 10.1016/0167-6911(85)90015-5
Reference: [9] Vidyasagar M.: Control Systems Synthesis: A Factorization Approach.M.I.T. Press, Cambridge, MA 1985 MR 0787045
.

Files

Files Size Format View
Kybernetika_38-2002-2_6.pdf 1.113Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo