Previous |  Up |  Next

Article

Title: On continuous convergence and epi-convergence of random functions. Part I: Theory and relations (English)
Author: Vogel, Silvia
Author: Lachout, Petr
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 1
Year: 2003
Pages: [75]-98
Summary lang: English
.
Category: math
.
Summary: Continuous convergence and epi-convergence of sequences of random functions are crucial assumptions if mathematical programming problems are approximated on the basis of estimates or via sampling. The paper investigates “almost surely” and “in probability” versions of these convergence notions in more detail. Part I of the paper presents definitions and theoretical results and Part II is focused on sufficient conditions which apply to many models for statistical estimation and stochastic optimization. (English)
Keyword: continuous convergence
Keyword: epi-convergence
Keyword: stochastic programming
Keyword: stability
MSC: 60B10
MSC: 62G05
MSC: 90C15
MSC: 90C31
idZBL: Zbl 1249.90184
idMR: MR1980125
.
Date available: 2009-09-24T19:51:17Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135509
.
Related article: http://dml.cz/handle/10338.dmlcz/135510
.
Reference: [1] Attouch H.: Variational Convergence for Functions and Operators.Pitman, London 1984 Zbl 0561.49012, MR 0773850
Reference: [2] Artstein Z., Wets R. J.-B.: Stability results for stochastic programs and sensors, allowing for discontinuous objective functions.SIAM J. Optim. 4 (1994), 537-550 Zbl 0830.90111, MR 1287815, 10.1137/0804030
Reference: [3] Artstein Z., Wets R. J.-B.: Consistency of minimizers and the SLLN for stochastic programs.J. Convex Analysis 2 (1995), 1–17 Zbl 0837.90093, MR 1363357
Reference: [4] Bank B., Guddat J., Klatte D., Kummer, B., Tammer K.: Non-Linear Parametric Optimization.Akademie Verlag, Berlin 1982 Zbl 0502.49002
Reference: [5] Beer G.: Topologies on Closed and Closed Convex Sets.Kluwer, Dordrecht 1993 Zbl 0792.54008, MR 1269778
Reference: [6] Cohn D. L.: Measure Theory.Birkhäuser, Boston 1980 Zbl 0860.28001, MR 0578344
Reference: [7] Dupačová J.: Stability and sensitivity analysis in stochastic programming.Ann. Oper. Res. 27 (1990), 115–142 MR 1088990, 10.1007/BF02055193
Reference: [8] Dupačová J., Wets R. J.-B.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic problems.Ann. Statist. 16 (1988), 1517–1549 MR 0964937, 10.1214/aos/1176351052
Reference: [9] Kall P.: Approximations to optimization problems: An elementary review.Math. Oper. Res. 11 (1986), 9–18 MR 0830103, 10.1287/moor.11.1.9
Reference: [10] Kall P.: On approximations and stability in stochastic programming.In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 86–103 Zbl 0636.90066, MR 0909741
Reference: [11] Kaniovski Y. M., King A. J., Wets R. J.-B.: Probabilistic bounds (via large deviations) for the solution of stochastic programming problems.Ann. Oper. Res. 56 (1995), 189–208 MR 1339792, 10.1007/BF02031707
Reference: [12] Kaňková V., Lachout P.: Convergence rate of empirical estimates in stochastic programming.Informatica 3 (1992), 497–523 Zbl 0906.90133, MR 1243755
Reference: [13] King A. J., Wets R. J.-B.: Epi-consistency of convex stochastic programs.Stochastics and Stochastics Reports 34 (1991), 83–92 Zbl 0733.90049, MR 1104423, 10.1080/17442509108833676
Reference: [14] Langen H.-J.: Convergence of dynamic programming models.Math. Oper. Res. 6 (1981), 493–512 Zbl 0496.90085, MR 0703092, 10.1287/moor.6.4.493
Reference: [15] Pflug G. Ch., Ruszczyňski, A., Schultz R.: On the Glivenko-Cantelli problem in stochastic programming: Linear recourse and extensions.Math. Oper. Res. 23 (1998), 204–220 Zbl 0977.90031, MR 1606474, 10.1287/moor.23.1.204
Reference: [16] Robinson S. M.: Local epi-continuity and local optimization.Math. Programming 37 (1987), 208–222 Zbl 0623.90078, MR 0883021, 10.1007/BF02591695
Reference: [17] Robinson S. M., Wets R. J.-B.: Stability in two-stage stochastic programming.SIAM J. Control Optim. 25 (1987), 1409–1416 Zbl 0639.90074, MR 0912447, 10.1137/0325077
Reference: [18] Rockafellar R. T., Wets R. J.-B.: Variational Analysis.Springer–Verlag, Berlin 1998 Zbl 0888.49001, MR 1491362
Reference: [19] Römisch W., Schultz R.: Distribution sensitivity in stochastic programming.Math. Programming 50 (1991), 197–226 Zbl 0743.90083, MR 1103933, 10.1007/BF01594935
Reference: [20] Römisch W., Schultz R.: Stability of solutions for stochastic programs with complete recourse.Math. Oper. Res. 18 (1993), 590–609 Zbl 0797.90070, MR 1250562, 10.1287/moor.18.3.590
Reference: [21] Römisch W., Schultz R.: Lipschitz stability for stochastic programs with complete recourse.SIAM J. Optim. 6 (1996), 531–447 Zbl 0854.90113, MR 1387338, 10.1137/0806028
Reference: [22] Römisch W., Wakolbinger A.: Obtaining convergence rates for approximations in stochastic programming.In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 327–343 MR 0909737
Reference: [23] Salinetti G., Wets R. J.-B.: On the convergence of closed-valued measurable multifunctions.Trans. Amer. Math. Soc. 266 (1981), 275–289 Zbl 0501.28005, MR 0613796
Reference: [24] Salinetti G., Wets R. J-B.: On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima.Math. Oper. Res. 11 (1986), 385–419 Zbl 0611.60004, MR 0852332, 10.1287/moor.11.3.385
Reference: [25] Vogel S.: Stochastische Stabilitätskonzepte.Habilitation, Ilmenau Technical University, 1991
Reference: [26] Vogel S.: On stability in multiobjective programming – A stochastic approach.Math. Programming 56 (1992), 91–119 Zbl 0770.90061, MR 1175561, 10.1007/BF01580896
Reference: [27] Vogel S.: A stochastic approach to stability in stochastic programming.J. Comput. Appl. Math., Series Appl. Analysis and Stochastics 56 (1994), 65–96 Zbl 0824.90107, MR 1338637
Reference: [28] Vogel S.: On stability in stochastic programming – Sufficient conditions for continuous convergence and epi-convergence.Preprint of Ilmenau Technical University, 1994 MR 1338637
Reference: [29] Wang J.: Continuity of feasible solution sets of probabilistic constrained programs.J. Optim. Theory Appl. 63 (1989), 79–89 MR 1022368, 10.1007/BF00940733
Reference: [30] Wets R. J.-B.: Stochastic programming.In: Handbooks in Operations Research and Management Science, Vol. 1, Optimization (G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, eds.), North Holland, Amsterdam 1989, pp. 573–629 Zbl 0752.90052, MR 1105107
Reference: [31] Zervos M.: On the epiconvergence of stochastic optimization problems.Math. Oper. Res. 24 (1999), 2, 495–508 Zbl 1074.90552, MR 1853885, 10.1287/moor.24.2.495
.

Files

Files Size Format View
Kybernetika_39-2003-1_6.pdf 2.528Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo