Previous |  Up |  Next

Article

Title: On continuous convergence and epi-convergence of random functions. Part II: Sufficient conditions and applications (English)
Author: Vogel, Silvia
Author: Lachout, Petr
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 1
Year: 2003
Pages: [99]-118
Summary lang: English
.
Category: math
.
Summary: Part II of the paper aims at providing conditions which may serve as a bridge between existing stability assertions and asymptotic results in probability theory and statistics. Special emphasis is put on functions that are expectations with respect to random probability measures. Discontinuous integrands are also taken into account. The results are illustrated applying them to functions that represent probabilities. (English)
Keyword: continuous convergence
Keyword: epi-convergence
Keyword: stochastic programming
Keyword: stability
Keyword: estimates
MSC: 60B10
MSC: 62G05
MSC: 90C15
MSC: 90C31
idZBL: Zbl 1249.90185
idMR: MR1980126
.
Date available: 2009-09-24T19:51:24Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135510
.
Related article: http://dml.cz/handle/10338.dmlcz/135509
.
Reference: [1] Artstein Z., Wets R. J.-B.: Stability results for stochastic programs and sensors, allowing for discontinuous objective functions.SIAM J. Optim. 4 (1994), 537–550 Zbl 0830.90111, MR 1287815, 10.1137/0804030
Reference: [2] Bank B., Guddat J., Klatte D., Kummer, B., Tammer K.: Non-Linear Parametric Optimization.Akademie Verlag, Berlin 1982 Zbl 0502.49002
Reference: [3] Billingsley P.: Convergence of Probability Measures.Wiley, New York 1968 Zbl 0944.60003, MR 0233396
Reference: [4] Billingsley P.: Probability and Measure.Wiley, New York 1979 Zbl 0822.60002, MR 0534323
Reference: [5] Devroye L., Györfi L.: Nonparametric Density Estimation.The L$_1$-View. Wiley, 1985 Zbl 0546.62015, MR 0780746
Reference: [6] Dupačová J., Wets R. J.-B.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic problems.Ann. Statist. 16 (1988), 1517–1549 MR 0964937, 10.1214/aos/1176351052
Reference: [7] Embrechts P., Klüppelberg, C., Mikosch T.: Modelling Extremal Events.Springer–Verlag, Berlin 1997 Zbl 0873.62116, MR 1458613
Reference: [8] Györfi L., Härdle W., Sarda, P., Vieu P.: Nonparametric Curve Estimation from Time Series (Lecture Notes in Statistics 60).Springer–Verlag, Berlin 1989 MR 1027837
Reference: [9] Kall P.: On approximations and stability in stochastic programming.In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 86–103 Zbl 0636.90066, MR 0909741
Reference: [10] Kaniovski Y. M., King A. J., Wets R. J.-B.: Probabilistic bounds (via large deviations) for the solution of stochastic programming problems.Ann. Oper. Res. 56 (1995), 189–208 MR 1339792, 10.1007/BF02031707
Reference: [11] Kaňková V.: A note on estimates in stochastic programming.J. Comput. Appl. Math. 56 (1994), 97–112 MR 1338638, 10.1016/0377-0427(94)90381-6
Reference: [12] Kaňková V., Lachout P.: Convergence rate of empirical estimates in stochastic programming.Informatica 3 (1992), 497–523 Zbl 0906.90133, MR 1243755
Reference: [13] King A. J., Wets R. J.-B.: Epi-consistency of convex stochastic programs.Stochastics and Stochastics Reports 34(1991),83–92 Zbl 0733.90049, MR 1104423
Reference: [14] Korf L. A., Wets R. J.-B.: Random lsc functions: an ergodic theorem.Math. Oper. Research 26 (2001), 421–445 Zbl 1082.90552, MR 1895837, 10.1287/moor.26.2.421.10548
Reference: [15] Lachout P., Vogel S.: On continuous convergence and epi-convergence of random functions.Part I: Theory and relations. Kybernetika 39 (2003), 1, 75–98 MR 1980125
Reference: [16] Langen H.-J.: Convergence of dynamic programming models.Math. Oper. Res. 6 (1981), 493–512 Zbl 0496.90085, MR 0703092, 10.1287/moor.6.4.493
Reference: [17] Liebscher E.: Strong convergence of sums of $\alpha $-mixing random variables with applications to density estimations.Stoch. Process. Appl. 65 (1996), 69–80 MR 1422880, 10.1016/S0304-4149(96)00096-8
Reference: [18] Lucchetti R., Wets R. J.-B.: Convergence of minima of integral functionals, with applications to optimal control and stochastic optimization.Statist. Decisions 11 (1993), 69–84 Zbl 0779.49030, MR 1220438
Reference: [19] Pflug G. Ch., Ruszczyňski, A., Schultz R.: On the Glivenko–Cantelli problem in stochastic programming: Linear recourse and extensions.Math. Oper. Res. 23 (1998), 204–220 Zbl 0977.90031, MR 1606474, 10.1287/moor.23.1.204
Reference: [20] Rachev S. T.: The Monge–Kantorovich mass transference problem and its stochastic applications.Theory Probab. Appl. 29 (1984), 647–676 MR 0773434
Reference: [21] Robinson S. M.: Local epi-continuity and local optimization.Math. Programming 37 (1987), 208–222 Zbl 0623.90078, MR 0883021, 10.1007/BF02591695
Reference: [22] Robinson S. M., Wets R. J.-B.: Stability in two-stage stochastic programming.SIAM J. Control Optim. 25 (1987), 1409–1416 Zbl 0639.90074, MR 0912447, 10.1137/0325077
Reference: [23] Römisch W., Schultz R.: Stability of solutions for stochastic programs with complete recourse.Math. Oper. Res. 18 (1993), 590–609 Zbl 0797.90070, MR 1250562, 10.1287/moor.18.3.590
Reference: [24] Silverman B. W.: Density Estimation for Statistics and Data Analysis.Chapman and Hall, London 1986 Zbl 0617.62042, MR 0848134
Reference: [25] Vogel S.: Stochastische Stabilitätskonzepte.Habilitation, Ilmenau Technical University, 1991
Reference: [26] Vogel S.: On stability in multiobjective programming – A stochastic approach.Math. Programming 56 (1992), 91–119 Zbl 0770.90061, MR 1175561, 10.1007/BF01580896
Reference: [27] Vogel S.: A stochastic approach to stability in stochastic programming.J. Comput. Appl. Mathematics, Series Appl. Analysis and Stochastics 56 (1994), 65–96 Zbl 0824.90107, MR 1338637
Reference: [28] Vogel S.: On stability in stochastic programming – Sufficient conditions for continuous convergence and epi-convergence.Preprint of Ilmenau Technical University, 1994 MR 1338637
Reference: [29] Wang J.: Continuity of feasible solution sets of probabilistic constrained programs.J. Optim. Theory Appl. 63 (1989), 79–89 MR 1022368, 10.1007/BF00940733
Reference: [30] Wets R. J.-B.: Stochastic programming.In: Handbooks in Operations Research and Management Science, Vol. 1, Optimization (G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, eds.), North Holland, Amsterdam 1989, pp. 573–629 Zbl 0752.90052, MR 1105107
Reference: [31] Zervos M.: On the epiconvergence of stochastic optimization problems.Math. Oper. Res. 24 (1999), 2, 495–508 Zbl 1074.90552, MR 1853885, 10.1287/moor.24.2.495
.

Files

Files Size Format View
Kybernetika_39-2003-1_7.pdf 1.890Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo