Previous |  Up |  Next


algebraic systems theory; discrete-event dynamicsystems; asymptotic stability
MM functions, formed by finite composition of the operators min, max and translation, represent discrete-event systems involving disjunction, conjunction and delay. The paper shows how they may be formulated as homogeneous rational algebraic functions of degree one, over (max, +) algebra, and reviews the properties of such homogeneous functions, illustrated by some orbit-stability problems.
[1] Baccelli F. L., Cohen G., Olsder G.-J., Quadrat J.-P.: Synchronization and Linearity, An Algebra for Discrete Event Systems. Wiley, Chichester 1992 MR 1204266 | Zbl 0824.93003
[2] Cuninghame-Green R. A.: Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166). Springer–Verlag, Berlin 1979 MR 0580321
[3] Cuninghame-Green R. A., Meijer P. F. J.: An algebra for piecewise-linear minimax problems. Discrete Appl. Math. 2 (1980), 267–294 DOI 10.1016/0166-218X(80)90025-6 | MR 0600179 | Zbl 0448.90070
[4] Cuninghame-Green R. A.: Minimax algebra and applications. In: Advances in Imaging and Electron Physics 90 (P. W. Hawkes, ed.), Academic Press, New York 1995 Zbl 0739.90073
[5] Cuninghame-Green R. A.: Maxpolynomial equations. Fuzzy Sets and Systems 75 (1995), 179–187 DOI 10.1016/0165-0114(95)00012-A | MR 1358220 | Zbl 0857.90134
[6] Gaubert S., Gunawardena J.: The duality theorem for min-max functions. C. R. Acad. Sci. Paris 326 (1998), 43–48 DOI 10.1016/S0764-4442(97)82710-3 | MR 1649473 | Zbl 0933.49017
[7] Manber U.: Introduction to Algorithms. Addison–Wesley, New York 1989 MR 1091251 | Zbl 0825.68397
Partner of
EuDML logo