Previous |  Up |  Next

Article

Title: Soluble approximation of linear systems in max-plus algebra (English)
Author: Cechlárová, Katarína
Author: Cuninghame-Green, Ray A.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 2
Year: 2003
Pages: [137]-141
Summary lang: English
.
Category: math
.
Summary: We propose an efficient method for finding a Chebyshev-best soluble approximation to an insoluble system of linear equations over max-plus algebra. (English)
Keyword: discrete-event dynamic systems
Keyword: max-plus algebra
Keyword: systems of linear equations
Keyword: approximation
MSC: 06F05
MSC: 15A06
MSC: 15A33
MSC: 15A80
MSC: 37M99
MSC: 93B25
MSC: 93C65
idZBL: Zbl 1249.93040
idMR: MR1996552
.
Date available: 2009-09-24T19:52:06Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135516
.
Reference: [1] Baccelli F. L., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity, An Algebra for Discrete Event Systems.Wiley, Chichester 1992 Zbl 0824.93003, MR 1204266
Reference: [2] Cechlárová K.: A note on unsolvable systems of max-min (fuzzy) equations.Linear Algebra Appl. 310 (2000), 123–128 Zbl 0971.15002, MR 1753171
Reference: [3] Cechlárová K., Diko P.: Resolving infeasibility in extremal algebras.Linear Algebra Appl. 290 (1999), 267–273 Zbl 0932.15009, MR 1672997
Reference: [4] A.Cuninghame-Green R.: Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166).Springer, Berlin 1979 MR 0580321
Reference: [5] Cuninghame-Green R. A., Cechlárová K.: Residuation in fuzzy algebra and some applications.Fuzzy Sets and Systems 71 (1995), 227–239 Zbl 0845.04007, MR 1329610
Reference: [6] Schutter B. De: Max-Algebraic System Theory for Discrete Event Systems.Thesis. Katholieke Universiteit Leuven, Belgium 1996
.

Files

Files Size Format View
Kybernetika_39-2003-2_4.pdf 488.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo