Previous |  Up |  Next

Article

Title: Minimal positive realizations: a survey of recent results and open problems (English)
Author: Benvenuti, Luca
Author: Farina, Lorenzo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 2
Year: 2003
Pages: [217]-228
Summary lang: English
.
Category: math
.
Summary: In this survey paper some recent results on the minimality problem for positive realizations are discussed. In particular, it is firstly shown, by means of some examples, that the minimal dimension of a positive realization of a given transfer function, may be much “larger” than its McMillan degree. Then, necessary and sufficient conditions for the minimality of a given positive realization in terms of positive factorization of the Hankel matrix are given. Finally, necessary and sufficient conditions for a third order transfer function with distinct real positive poles to have a third order positive realization are provided and some open problems related to minimality are discussed. (English)
Keyword: positive systems
Keyword: positiverealizations
MSC: 06F05
MSC: 93B15
MSC: 93B27
idZBL: Zbl 1249.93036
idMR: MR1996559
.
Date available: 2009-09-24T19:53:00Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135523
.
Reference: [1] Anderson B. D. O.: New developments in the theory of positive systems.In: Systems and Control in the Twenty–first Century (Byrnes, Datta, Gilliam, and Martin, eds.), Birkhäuser, Boston 1997 Zbl 0864.93032, MR 1427775
Reference: [2] Anderson B. D. O., Deistler M., Farina, L., Benvenuti L.: Nonnegative realization of a linear system with nonnegative impulse response.IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications 43 (1996), 2, 134–142 MR 1375779
Reference: [3] Benvenuti L., Farina L.: On the class of linear filters attainable with charge routing networks.IEEE Trans. Circuits and Systems II: Analog and Signal Processing 43 (1996), 2, 618–622 Zbl 0879.93029
Reference: [4] Benvenuti L., Farina L.: A note on minimality of positive realizations.IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications 45 (1998), 6, 676–677 Zbl 0951.93013, MR 1631075
Reference: [5] Benvenuti L., Farina L.: An example of how positivity may force realizations of “large” dimension.System Control Lett. 36 (1999), 4, 261–266 Zbl 0915.93014, MR 1752017, 10.1016/S0167-6911(98)00098-X
Reference: [6] Benvenuti L., Farina L.: The design of fiber optic filters.IEEE/OSA Journal of Lightwave Technology 19 (2001), 6, 1366–1375 10.1109/50.948284
Reference: [7] Benvenuti L., Farina L., Anderson B. D. O., Bruyne F. De: Minimal positive realizations of transfer functions with positive real poles.IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications 47 (2000), 9, 1370–1377 Zbl 1030.93009, MR 1803660
Reference: [8] Berman A., Neumann, M., Stern R. J.: Nonnegative Matrices in Dynamic Systems.Wiley, New York 1989 Zbl 0723.93013, MR 1019319
Reference: [9] Commault J., Chemla J. P.: An invariant of representations of phase–type distributions and some applications.J. Appl. Probab. 33 (1996), 368–381 Zbl 0855.60071, MR 1385346, 10.2307/3215060
Reference: [10] Farina L.: On the existence of a positive realization.System Control Lett. 28 (1997), 219–226 MR 1411875, 10.1016/0167-6911(96)00033-3
Reference: [11] Farina L., Rinaldi S.: Positive Linear Systems: Theory And Applications.Wiley Interscience, New York 2000 Zbl 0988.93002, MR 1784150
Reference: [12] Foerster K. H., Nagy B.: Nonnegative realizations of matrix transfer functions.Linear Algebra Appl. 311 (2000), 107–129 Zbl 0989.93016, MR 1758208
Reference: [13] Gersho A., Gopinath B.: Charge-routing networks.IEEE Trans. Circuits and Systems 26 (1979), 1, 81–92 Zbl 0394.93054, MR 0521656, 10.1109/TCS.1979.1084617
Reference: [14] Hadjicostis C.: Bounds on the size of minimal nonnegative realization for discrete–time lti systems.System Control Lett. 37 (1999), 1, 39–43 MR 1747805, 10.1016/S0167-6911(99)00005-5
Reference: [15] Kajiya F., Kodama, S., Abe H.: Compartmental Analysis – Medical Applications and Theoretical Background.Karger, Basel 1984
Reference: [16] Karpelevich F. I.: On the characteristic roots of matrices with nonnegative elements (in Russian).Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 361–383 MR 0043063
Reference: [17] Leontieff W. W.: The Structure of the American Economy 1919–1939.Oxford Univ. Press, New York 1951
Reference: [18] Leslie P. H.: On the use of matrices in certain population mathematics.Biometrika 35 (1945), 183–212 Zbl 0060.31803, MR 0015760, 10.1093/biomet/33.3.183
Reference: [19] Luenberger D. G.: Introduction to Dynamic Systems.Wiley, New York 1979 Zbl 0458.93001
Reference: [20] Minc H.: Nonnegative Matrices.Wiley, New York 1987 Zbl 0638.15008, MR 0932967
Reference: [21] Niewenhuis J. W.: About nonnegative realizations.System Control Lett. 1 (1982), 4, 283–287 MR 0670213, 10.1016/S0167-6911(82)80024-8
Reference: [22] O’Cinneide C. A.: Characterization of phase–tipe distributions.Stochastic Models 6 (1990), 1, 1–57 MR 1047102, 10.1080/15326349908807134
Reference: [23] O’Cinneide C. A.: Phase–tipe distributions: open problems and a few properties.Stochastic Models 15 (1999), 731–757 MR 1708454, 10.1080/15326349908807560
Reference: [24] Ohta Y., Maeda, H., Kodama S.: Reachability, observability and realizability of continuous-time positive systems.SIAM J. Control Optim. 22 (1984), 2, 171–180 Zbl 0539.93005, MR 0732422, 10.1137/0322013
Reference: [25] Picci G.: On the Internal Structure of Finite–State Stochastic Processes.(Lecture Notes in Economics and Mathematical Systems 162). Springer–Verlag, Berlin 1978 Zbl 0395.93032, MR 0582802
Reference: [26] Rabiner L. R.: A tutorial on hidden markov models and selected applications in speech recognition.Proc. IEEE 77 (1989), 257–286
Reference: [27] Saaty T. L.: Elements of Queueing Theory.McGraw–Hill, New York 1961 Zbl 0228.60042, MR 0133176
Reference: [28] Valcher M. E.: Controllability and reachability criteria for discrete–time positive systems.Internat. J. Control 65 (1996), 511–536 Zbl 0873.93009, MR 1657570, 10.1080/00207179608921708
Reference: [29] Schuppen J. H. van: Stochastic realization problems motivated by econometric modelling.In: Identification and Robust Control (Byrnes and Lindquist, eds.), Elsevier 1986
Reference: [30] Picci G., Schuppen J. H. van: Primes in several classes of the positive matrices.Linear Algebra Appl. 277 (1998), 1–3, 149–185 MR 1624540
.

Files

Files Size Format View
Kybernetika_39-2003-2_11.pdf 1.431Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo