Previous |  Up |  Next

Article

Title: $T$-equivalences generated by shape function on the real line (English)
Author: Hong, Dug Hun
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 3
Year: 2003
Pages: [281]-288
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to give a new method of generating T-equivalence using shape function and finding the exact calculation formulas of T-equivalence induced by shape function on the real line. Some illustrative examples are given. (English)
Keyword: fuzzy number
Keyword: fuzzy relation
Keyword: t-norm
Keyword: T-equivalence
Keyword: shape function
MSC: 03E02
MSC: 03E72
MSC: 26A21
MSC: 26E50
idZBL: Zbl 1249.26006
idMR: MR1995731
.
Date available: 2009-09-24T19:53:39Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135529
.
Reference: [1] Baets B. De, Marková A.: Analytical for the addition of fuzzy intervals.Fuzzy Sets and Systems 91 (1997), 203–213 MR 1480046, 10.1016/S0165-0114(97)00141-3
Reference: [2] Baets B. De, Mareš, M., Mesiar R.: T-partition of the real line generated by impotent shapes.Fuzzy Sets and Systems 91 (1997), 177–184 MR 1480044
Reference: [3] Baets B. De, Mesiar R.: Pseudo-metrics and T-equivalence.J. Fuzzy Math. 5 (1997), 471–481 MR 1457163
Reference: [4] Harrison M. A.: Introduction to Switching and Automata Theory.McGraw–Hill, New York 1965 Zbl 0196.51702, MR 0186503
Reference: [5] Hong D. H., Hwang S. Y.: On the convergence of T-sum of L-R fuzzy numbers.Fuzzy Sets and Systems 63 (1994), 175–180 Zbl 0844.04004, MR 1275891, 10.1016/0165-0114(94)90347-6
Reference: [6] Hong D. H., Hwang C.: A T-sum bound of L-R fuzzy numbers.Fuzzy Sets and Systems 91 (1997), 239–252 MR 1480049, 10.1016/S0165-0114(97)00144-9
Reference: [7] Hong D. H., Ro P.: The law of large numbers for fuzzy numbers with bounded supports.Fuzzy Sets and Systems 116 (2000), 269–274 MR 1788398
Reference: [8] Jacas J., Recasens J.: Fuzzy numbers and equality relations.In: Proc. 2nd IEEE International Conference on Fuzzy Systems, San Francisco 1993, pp. 1298–1301
Reference: [9] Ling C.: Representation of associative function.Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575
Reference: [10] Mareš M., Mesiar R.: Composition of shape generators.Acta Mathematica et Informatica Universitatis Ostravienses 4 (1996), 37–46 Zbl 0870.04003, MR 1446782
Reference: [11] Mareš M., Mesiar R.: Fuzzy quantities and their aggregation, in aggregation operations.In: New Trends and Applications. Physica–Verlag, Heidelberg 2002, pp. 291–352 MR 1936394
Reference: [12] Marková–Stupňanová A.: Idempotents of T-addition of fuzzy numbers.Tatra Mt. Math. Publ. 12 (1997), 67–72 Zbl 0954.03059, MR 1607198
Reference: [13] Mesiar R.: A note to T-sum of L-R fuzzy numbers.Fuzzy Sets and Systems 87 (1996), 259–261 MR 1388398, 10.1016/0165-0114(95)00178-6
Reference: [14] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, New York 1983 Zbl 0546.60010, MR 0790314
.

Files

Files Size Format View
Kybernetika_39-2003-3_3.pdf 670.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo