Previous |  Up |  Next

Article

Title: Reversible jump MCMC for two-state multivariate Poisson mixtures (English)
Author: Lahtinen, Jani
Author: Lampinen, Jouko
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 3
Year: 2003
Pages: [307]-315
Summary lang: English
.
Category: math
.
Summary: The problem of identifying the source from observations from a Poisson process can be encountered in fault diagnostics systems based on event counters. The identification of the inner state of the system must be made based on observations of counters which entail only information on the total sum of some events from a dual process which has made a transition from an intact to a broken state at some unknown time. Here we demonstrate the general identifiability of this problem in presence of multiple counters. (English)
Keyword: Bayesian inference
Keyword: fault diagnostics
Keyword: Poisson processes
Keyword: reversible-jump MCMC
MSC: 62F15
MSC: 62M05
MSC: 62P30
MSC: 65C40
idZBL: Zbl 1249.62009
idMR: MR1995735
.
Date available: 2009-09-24T19:54:09Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135533
.
Reference: [1] Chen, Ming-Hui, Shao,, Qi-Man, Ibrahim J. Q.: Monte Carlo Methods in Bayesian Computation.Springer, New York 2000 Zbl 0949.65005, MR 1742311
Reference: [2] Geman S., Geman D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.IEEE Trans. on Pattern Analysis and Machine Intelligence 64 (1984), 2, 721–741 Zbl 0573.62030, 10.1109/TPAMI.1984.4767596
Reference: [3] Green P.: Reversible jump Markov chain Monte Carlo computation, Bayesian model determination.Biometrika 82 (1995), 711–732,http://www.stats.bris.ac.uk/pub/reports/MCMC/revjump.ps MR 1380810, 10.1093/biomet/82.4.711
Reference: [4] Marrs A. D.: An application of Reversible–Jump MCMC to multivariate spherical Gaussian mixtures.In: Advances in Neural Information Processing Systems 10 (M. I. Jordan, M. J. Kearns, and S. A. Solla, eds.), MIT Press, Cambridge, MA 1998
Reference: [5] Neal R. M.//Probabilistic Inference Using Markov Chain Monte Carlo Methods: Technical Report No. CRG-TR-93-1, Dept. of Computer Science, University of Toronto, 1993, ftp:.ftp.cs.toronto.edu/pub/radford/review.ps.Z
Reference: [6] Robert C. P., Casella G.: Monte Carlo Statistical Methods.Springer–Verlag, New York 1999 Zbl 1096.62003, MR 1707311
Reference: [7] Viallefont V., Richardson, S., Green P.: Bayesian analysis of Poisson mixtures.J. Nonparametric Statistics 14 (2002), 1-2, 181–202 Zbl 1014.62035, MR 1905593, 10.1080/10485250211383
.

Files

Files Size Format View
Kybernetika_39-2003-3_7.pdf 1.159Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo