Previous |  Up |  Next

Article

Title: Computing complexity distances between algorithms (English)
Author: Romaguera, S.
Author: Sánchez-Pérez, E. A.
Author: Valero, O.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 5
Year: 2003
Pages: [569]-582
Summary lang: English
.
Category: math
.
Summary: We introduce a new (extended) quasi-metric on the so-called dual p-complexity space, which is suitable to give a quantitative measure of the improvement in complexity obtained when a complexity function is replaced by a more efficient complexity function on all inputs, and show that this distance function has the advantage of possessing rich topological and quasi-metric properties. In particular, its induced topology is Hausdorff and completely regular. Our approach is applied to the measurement of distances between infinite words over the decimal alphabet and some advantages of our computations with respect to the ones that provide the classical Baire metric are discussed. Finally, we show that the application of fixed point methods to the complexity analysis of Divide and Conquer algorithms, presented by M. Schellekens (Electronic Notes in Theoret. Comput. Sci.1(1995)), can be also given from our approach. (English)
Keyword: invariant extended quasi-metric
Keyword: complexity function
Keyword: balanced quasi-metric
Keyword: infinite word
Keyword: Baire metric
Keyword: contraction mapping
Keyword: Divide & Conquer algorithm
MSC: 54E50
MSC: 54H25
MSC: 54H99
MSC: 68Q15
MSC: 68Q25
idZBL: Zbl 1249.54069
idMR: MR2042342
.
Date available: 2009-09-24T19:56:52Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135556
.
Reference: [1] Bakker J. W. de, Vink E. P. de: Denotational models for programming languages: applications of Banach’s fixed point theorem.Topology Appl. 85 (1998), 35–52 Zbl 0933.68086, MR 1617453, 10.1016/S0166-8641(97)00140-5
Reference: [2] Ćirić L.: Periodic and fixed point theorems in a quasi-metric space.J. Austral. Math. Soc. Ser. A 54 (1993), 80–85 Zbl 0765.54040, MR 1195660, 10.1017/S1446788700036995
Reference: [3] Doitchinov D.: On completeness in quasi-metric spaces.Topology Appl. 30 (1988), 127–148 Zbl 0668.54019, MR 0967750, 10.1016/0166-8641(88)90012-0
Reference: [4] Engelking R.: General Topology.Polish Sci. Publ., Warsaw 1977 Zbl 0684.54001, MR 0500780
Reference: [6] Fletcher P., Lindgren W. F.: Quasi–Uniform Spaces.Marcel Dekker, 1982 Zbl 0583.54017, MR 0660063
Reference: [7] García-Raffi L. M., Romaguera, S., Sánchez-Pérez E. A.: Sequence spaces and asymmetric norms in the theory of computational complexity.Math. Comput. Modelling 36 (2002), 1–11 Zbl 1063.68057, MR 1925055, 10.1016/S0895-7177(02)00100-0
Reference: [8] Giles J. R.: Introduction to the Analysis of Metric Spaces.(Austral. Math. Soc. Lecture Series no. 3.) Cambridge Univ. Press, Cambridge 1987 Zbl 0645.46001, MR 0913302
Reference: [9] Hicks T. L.: Fixed point theorems for quasi-metric spaces.Math. Japon. 33 (1988), 231–236 Zbl 0642.54047, MR 0944022
Reference: [10] Jachymski J.: A contribution to fixed point theory in quasi-metric spaces.Publ. Math. Debrecen 43 (1993), 283–288 Zbl 0814.47061, MR 1269955
Reference: [11] Kahn G.: The semantics of a simple language for parallel processing.In: Proc. IFIP Congress, Elsevier and North-Holland, Amsterdam 1974, pp. 471–475 MR 0426486
Reference: [12] Keimel K., Roth W.: Ordered Cones and Approximation.Springer–Verlag, Berlin 1992 Zbl 0752.41033, MR 1176514
Reference: [13] Kopperman R. D.: Lengths on semigroups and groups.Semigroup Forum 25 (1982), 345–360 Zbl 0502.22002, MR 0679288, 10.1007/BF02573609
Reference: [14] Künzi H. P. A.: Nonsymmetric distances and their associated topologies: About the origin of basic ideas in the area of asymmetric topology.In: Handbook of the History of General Topology, Volume 3 (C. E. Aull and R. Lowen eds.), Kluwer, Dordrecht 2001, pp. 853–968 MR 1900267
Reference: [15] Künzi H. P. A., Ryser C.: The Bourbaki quasi-uniformity.Topology Proc. 20 (1995), 161–183 Zbl 0876.54022, MR 1429179
Reference: [16] Lecomte P., Rigo M.: On the representation of real numbers using regular languages.Theory Comput. Systems 35 (2002), 13–38 Zbl 0993.68050, MR 1879170
Reference: [17] Matthews S. G.: Partial metric topology.In: Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183–197 Zbl 0911.54025, MR 1467773, 10.1111/j.1749-6632.1994.tb44144.x
Reference: [18] Reilly I. L., Subrahmanyam P. V.: Some fixed point theorems.J. Austral. Math. Soc. Ser. A 53 (1992), 304–312 Zbl 0772.54041, MR 1187850, 10.1017/S144678870003648X
Reference: [19] Reilly I. L., Subrahmanyam P. V., Vamanamurthy M. K.: Cauchy sequences in quasi-pseudo-metric spaces.Monatsh. Math. 93 (1982), 127–140 Zbl 0472.54018, MR 0653103, 10.1007/BF01301400
Reference: [20] Romaguera S., Sanchis M.: Semi-Lipschitz functions and best approximation in quasi-metric spaces.J. Approx. Theory 103 (2000), 292–301 Zbl 0980.41029, MR 1749967, 10.1006/jath.1999.3439
Reference: [21] Romaguera S., Schellekens M.: Quasi-metric properties of complexity spaces.Topology Appl. 98 (1999), 311–322 Zbl 0941.54028, MR 1720009, 10.1016/S0166-8641(98)00102-3
Reference: [22] Romaguera S., Schellekens M.: Duality and quasi-normability for complexity spaces.Appl. Gen. Topology 3 (2002), 91–112 Zbl 1022.54018, MR 1931256
.

Files

Files Size Format View
Kybernetika_39-2003-5_6.pdf 1.578Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo