Previous |  Up |  Next

Article

Title: A general approach to decomposable bi-capacities (English)
Author: Saminger, Susanne
Author: Mesiar, Radko
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 5
Year: 2003
Pages: [631]-642
Summary lang: English
.
Category: math
.
Summary: We propose a concept of decomposable bi-capacities based on an analogous property of decomposable capacities, namely the valuation property. We will show that our approach extends the already existing concepts of decomposable bi-capacities. We briefly discuss additive and $k$-additive bi-capacities based on our definition of decomposability. Finally we provide examples of decomposable bi-capacities in our sense in order to show how they can be constructed. (English)
Keyword: bi-capacity
Keyword: cumulative prospect theory
Keyword: decomposable capacity
Keyword: uninorm
MSC: 03E72
MSC: 03H05
MSC: 28C99
MSC: 28E05
MSC: 68T37
idZBL: Zbl 1249.28022
idMR: MR2042345
.
Date available: 2009-09-24T19:57:23Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135560
.
Reference: [1] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: Properties, classes and construction methods.In: Aggregation Operators (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–104 Zbl 1039.03015, MR 1936384
Reference: [2] Choquet G.: Theory of capacities.Ann. Inst. Fourier (Grenoble) 5 (1953–1954), 131–292 MR 0080760, 10.5802/aif.53
Reference: [3] Fodor J. C., Yager R. R., Rybalov A.: Structure of uninorms.Internat. J. Uncertain. Fuzziness Knowledge-based Systems 5 (1997), 411–427 Zbl 1232.03015, MR 1471619, 10.1142/S0218488597000312
Reference: [4] Grabisch M.: $k$-order additive discrete fuzzy measures and their representation.Fuzzy Sets and Systems 92 (1997), 167–189 Zbl 0927.28014, MR 1486417, 10.1016/S0165-0114(97)00168-1
Reference: [5] Grabisch M., Baets, B. De, Fodor J.: On symmetric pseudo-additions and pseudo-multiplications: Is it possible to build a ring on [-1,1]? In: Proc.9th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU 2002), Volume III, Annecy (France), July 2002, pp. 1349–1363
Reference: [6] Grabisch M., Labreuche C.: Bi-capacities.In: Proc. First Internat. Conference on Soft Computing and Intelligent Systems (SCIC), Tsukuba (Japan), 2002 Zbl 1208.91029
Reference: [7] Grabisch M., Labreuche C.: Bi-capacities for decision making on bipolar scales.In: Proc. Seventh Meeting of the EURO Working Group on Fuzzy Sets (EUROFUSE), Varenna (Italy), 2002, pp. 185–190
Reference: [8] Grabisch M., Labreuche C.: Capacities on lattices and $k$-ary capacities.In: Proc. 3rd Internat. Conference in Fuzzy Logic and Technology (EUSFLAT 2003), Zittau (Germany), 2003, pp. 304–307
Reference: [9] Greco S., Matarazzo, B., Slowinski R.: Bipolar Sugeno and Choquet integrals.In: Proc. Seventh Meeting of the EURO Working Group on Fuzzy Sets (EUROFUSE), Varenna (Italy), 2002, pp. 191–196
Reference: [10] Greco S., Matarazzo, B., Slowinski R.: The axiomatic basis of multicriteria noncompensatory preferences.In: Proc. Fourth International Workshop on Preferences and Decisions, Trento (Italy), 2003, pp. 81–86
Reference: [11] Klement E. P., Mesiar, R., Pap E.: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval.Internat. J. Uncertain. Fuzziness Knowledge-based Systems 8 (2000), 701–717 Zbl 0991.28014, MR 1803475, 10.1142/S0218488500000514
Reference: [12] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [13] Mesiar R.: Generalization of $k$-order additive discrete fuzzy measures.Fuzzy Sets and Systems 102 (1999), 423–428 MR 1676909, 10.1016/S0165-0114(98)00216-4
Reference: [14] Mesiar R.: $k$-order additive measures: Internat.J. Uncertain. Fuzziness Knowledge-based Systems 7 (1999), 6, 561–568 MR 1764304, 10.1142/S0218488599000489
Reference: [15] Mesiar R.: $k$-order additivity and maxitivity.Atti Sem. Mat. Fis. Univ. Modena LI (2003), 179–189 Zbl 1220.28001, MR 1993888
Reference: [16] Mesiar R., Saminger S.: Decomposable bi-capacities: In: Proc.Summer School on Aggregation Operators 2003 (AGOP 2003), University Alcala de Henares (Spain), 2003, pp. 155–158
Reference: [17] Miranda P., Grabisch, M., Gil P.: $p$-symmetric fuzzy measures.Internat. J. Uncertain. Fuzziness Knowledge-based Systems 10 (2002), 105–123 Zbl 1068.28013, MR 1962672, 10.1142/S0218488502001867
Reference: [18] Pap E.: Null-Additive Set Functions.Kluwer, Dordrecht 1995 Zbl 1003.28012, MR 1368630
Reference: [19] Sander W.: Associative aggregation operators.In: Aggregation Operators (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg, 2002, pp. 124–158 Zbl 1025.03054, MR 1936386
Reference: [20] Wang Z., Klir G. J.: Fuzzy Measure Theory.Plenum Press, New York 1992 Zbl 0812.28010, MR 1212086
Reference: [21] Weber S.: $\perp $-decomposable measures and integrals for Archimedean t-conorms $\perp $.J. Math. Anal. Appl. 101 (1984), 114–138 Zbl 0614.28019, MR 0746230, 10.1016/0022-247X(84)90061-1
Reference: [22] Yager R. R., Rybalov A.: Uninorm aggregation operators.Fuzzy Sets and Systems 80 (1996), 111–120 Zbl 0871.04007, MR 1389951, 10.1016/0165-0114(95)00133-6
.

Files

Files Size Format View
Kybernetika_39-2003-5_10.pdf 1.342Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo