Title:
|
A general approach to decomposable bi-capacities (English) |
Author:
|
Saminger, Susanne |
Author:
|
Mesiar, Radko |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
39 |
Issue:
|
5 |
Year:
|
2003 |
Pages:
|
[631]-642 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We propose a concept of decomposable bi-capacities based on an analogous property of decomposable capacities, namely the valuation property. We will show that our approach extends the already existing concepts of decomposable bi-capacities. We briefly discuss additive and $k$-additive bi-capacities based on our definition of decomposability. Finally we provide examples of decomposable bi-capacities in our sense in order to show how they can be constructed. (English) |
Keyword:
|
bi-capacity |
Keyword:
|
cumulative prospect theory |
Keyword:
|
decomposable capacity |
Keyword:
|
uninorm |
MSC:
|
03E72 |
MSC:
|
03H05 |
MSC:
|
28C99 |
MSC:
|
28E05 |
MSC:
|
68T37 |
idZBL:
|
Zbl 1249.28022 |
idMR:
|
MR2042345 |
. |
Date available:
|
2009-09-24T19:57:23Z |
Last updated:
|
2015-03-24 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135560 |
. |
Reference:
|
[1] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: Properties, classes and construction methods.In: Aggregation Operators (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–104 Zbl 1039.03015, MR 1936384 |
Reference:
|
[2] Choquet G.: Theory of capacities.Ann. Inst. Fourier (Grenoble) 5 (1953–1954), 131–292 MR 0080760, 10.5802/aif.53 |
Reference:
|
[3] Fodor J. C., Yager R. R., Rybalov A.: Structure of uninorms.Internat. J. Uncertain. Fuzziness Knowledge-based Systems 5 (1997), 411–427 Zbl 1232.03015, MR 1471619, 10.1142/S0218488597000312 |
Reference:
|
[4] Grabisch M.: $k$-order additive discrete fuzzy measures and their representation.Fuzzy Sets and Systems 92 (1997), 167–189 Zbl 0927.28014, MR 1486417, 10.1016/S0165-0114(97)00168-1 |
Reference:
|
[5] Grabisch M., Baets, B. De, Fodor J.: On symmetric pseudo-additions and pseudo-multiplications: Is it possible to build a ring on [-1,1]? In: Proc.9th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU 2002), Volume III, Annecy (France), July 2002, pp. 1349–1363 |
Reference:
|
[6] Grabisch M., Labreuche C.: Bi-capacities.In: Proc. First Internat. Conference on Soft Computing and Intelligent Systems (SCIC), Tsukuba (Japan), 2002 Zbl 1208.91029 |
Reference:
|
[7] Grabisch M., Labreuche C.: Bi-capacities for decision making on bipolar scales.In: Proc. Seventh Meeting of the EURO Working Group on Fuzzy Sets (EUROFUSE), Varenna (Italy), 2002, pp. 185–190 |
Reference:
|
[8] Grabisch M., Labreuche C.: Capacities on lattices and $k$-ary capacities.In: Proc. 3rd Internat. Conference in Fuzzy Logic and Technology (EUSFLAT 2003), Zittau (Germany), 2003, pp. 304–307 |
Reference:
|
[9] Greco S., Matarazzo, B., Slowinski R.: Bipolar Sugeno and Choquet integrals.In: Proc. Seventh Meeting of the EURO Working Group on Fuzzy Sets (EUROFUSE), Varenna (Italy), 2002, pp. 191–196 |
Reference:
|
[10] Greco S., Matarazzo, B., Slowinski R.: The axiomatic basis of multicriteria noncompensatory preferences.In: Proc. Fourth International Workshop on Preferences and Decisions, Trento (Italy), 2003, pp. 81–86 |
Reference:
|
[11] Klement E. P., Mesiar, R., Pap E.: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval.Internat. J. Uncertain. Fuzziness Knowledge-based Systems 8 (2000), 701–717 Zbl 0991.28014, MR 1803475, 10.1142/S0218488500000514 |
Reference:
|
[12] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer, Dordrecht 2000 Zbl 1087.20041, MR 1790096 |
Reference:
|
[13] Mesiar R.: Generalization of $k$-order additive discrete fuzzy measures.Fuzzy Sets and Systems 102 (1999), 423–428 MR 1676909, 10.1016/S0165-0114(98)00216-4 |
Reference:
|
[14] Mesiar R.: $k$-order additive measures: Internat.J. Uncertain. Fuzziness Knowledge-based Systems 7 (1999), 6, 561–568 MR 1764304, 10.1142/S0218488599000489 |
Reference:
|
[15] Mesiar R.: $k$-order additivity and maxitivity.Atti Sem. Mat. Fis. Univ. Modena LI (2003), 179–189 Zbl 1220.28001, MR 1993888 |
Reference:
|
[16] Mesiar R., Saminger S.: Decomposable bi-capacities: In: Proc.Summer School on Aggregation Operators 2003 (AGOP 2003), University Alcala de Henares (Spain), 2003, pp. 155–158 |
Reference:
|
[17] Miranda P., Grabisch, M., Gil P.: $p$-symmetric fuzzy measures.Internat. J. Uncertain. Fuzziness Knowledge-based Systems 10 (2002), 105–123 Zbl 1068.28013, MR 1962672, 10.1142/S0218488502001867 |
Reference:
|
[18] Pap E.: Null-Additive Set Functions.Kluwer, Dordrecht 1995 Zbl 1003.28012, MR 1368630 |
Reference:
|
[19] Sander W.: Associative aggregation operators.In: Aggregation Operators (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg, 2002, pp. 124–158 Zbl 1025.03054, MR 1936386 |
Reference:
|
[20] Wang Z., Klir G. J.: Fuzzy Measure Theory.Plenum Press, New York 1992 Zbl 0812.28010, MR 1212086 |
Reference:
|
[21] Weber S.: $\perp $-decomposable measures and integrals for Archimedean t-conorms $\perp $.J. Math. Anal. Appl. 101 (1984), 114–138 Zbl 0614.28019, MR 0746230, 10.1016/0022-247X(84)90061-1 |
Reference:
|
[22] Yager R. R., Rybalov A.: Uninorm aggregation operators.Fuzzy Sets and Systems 80 (1996), 111–120 Zbl 0871.04007, MR 1389951, 10.1016/0165-0114(95)00133-6 |
. |