| Title: | S-implications and $R$-implications on a finite chain (English) | 
| Author: | Mas, Margarita | 
| Author: | Monserrat, Miquel | 
| Author: | Torrens, Joan | 
| Language: | English | 
| Journal: | Kybernetika | 
| ISSN: | 0023-5954 | 
| Volume: | 40 | 
| Issue: | 1 | 
| Year: | 2004 | 
| Pages: | [3]-20 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | This paper is devoted to the study of two kinds of implications on a finite chain $L$: $S$-implications and $R$-implications. A characterization of each kind of these operators is given and a lot of different implications on $L$ are obtained, not only from smooth t-norms but also from non smooth ones. Some additional properties on these implications are studied specially in the smooth case. Finally, a class of non smooth t-norms including the nilpotent minimum is characterized. Any t-norm in this class satisfies that both, its $S$-implication and its $R$-implication, agree. (English) | 
| Keyword: | t-norm | 
| Keyword: | T-conorm | 
| Keyword: | finite chain | 
| Keyword: | smoothness | 
| Keyword: | implication operator | 
| MSC: | 03B52 | 
| MSC: | 06F05 | 
| MSC: | 94D05 | 
| idZBL: | Zbl 1249.94094 | 
| idMR: | MR2068595 | 
| . | 
| Date available: | 2009-09-24T19:59:02Z | 
| Last updated: | 2015-03-23 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/135575 | 
| . | 
| Reference: | [1] Baets B. De: Model implicators and their characterization.In: Proc. First ICSC Internat. Symposium on Fuzzy Logic, Zürich, Switzerland (N. Steele, ed.). ICSC Academic Press 1995, pp. A42–A49 | 
| Reference: | [2] Baets B. De, Fodor J. C.: On the structure of uninorms and their residual implicators.In: Proc. 18th Linz Seminar on Fuzzy Set Theory, Linz, Austria 1997, pp. 81–87 | 
| Reference: | [3] Baets B. De, Fodor J. C.: Residual operators of representable uninorms.In: Proc. Fifth European Congress on Intelligent Techniques and Soft Computing, Volume 1 (H. J. Zimmermann, ed.), ELITE, Aachen, Germany 1997, pp. 52–56 | 
| Reference: | [4] Baets B. De, Mesiar R.: Residual implicators of continuous t-norms.In: Proc. Fourth European Congress on Intelligent Techniques and Soft Computing, Volume 1 (H. J. Zimmermann, ed.), ELITE, Aachen, Germany 1997, pp. 27–31 | 
| Reference: | [5] Baets B. De, Mesiar R.: Triangular norms on product lattices.Fuzzy Sets and Systems 104 (1999), 61–75 Zbl 0935.03060, MR 1685810, 10.1016/S0165-0114(98)00259-0 | 
| Reference: | [6] Bustince H., Burillo, P., Soria F.: Automorphisms, negations and implication operators.Fuzzy Sets and Systems 134 (2003), 209–229 MR 1969102, 10.1016/S0165-0114(02)00214-2 | 
| Reference: | [7] Cignoli R., Esteva F., Godo, L., Montagna F.: On a class of left-continuous t-norms.Fuzzy Sets and Systems 131 (2002), 283–296 MR 1939841, 10.1016/S0165-0114(01)00215-9 | 
| Reference: | [8] Cignoli R., Esteva F., Godo, L., Torrens A.: Basic fuzzy logic is the logic of continuous t-norms and their residua.Soft Computing 4 (2000), 106–112 10.1007/s005000000044 | 
| Reference: | [9] Cignoli R., D’Ottaviano, I., Mundici D.: Algebraic Foundations of Many-valued Reasoning.Kluwer, Dordrecht 2000 Zbl 0937.06009, MR 1786097 | 
| Reference: | [10] Esteva F., Godo L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms.Fuzzy Sets and Systems 124 (2001), 271–288 Zbl 0994.03017, MR 1860848 | 
| Reference: | [11] Fodor J. C.: On fuzzy implication operators.Fuzzy Sets and Systems 42 (1991), 293–300 Zbl 0736.03006, MR 1127976, 10.1016/0165-0114(91)90108-3 | 
| Reference: | [12] Fodor J. C.: Contrapositive symmetry of fuzzy implications.Fuzzy Sets and Systems 69 (1995), 141–156 Zbl 0845.03007, MR 1317882, 10.1016/0165-0114(94)00210-X | 
| Reference: | [13] Fodor J. C.: Smooth associative operations on finite ordinal scales.IEEE Trans. Fuzzy Systems 8 (2000), 791–795 10.1109/91.890343 | 
| Reference: | [14] Godo L., Sierra C.: A new approach to connective generation in the framework of expert systems using fuzzy logic.In: Proc. XVIIIth ISMVL, Palma de Mallorca, Spain 1988, pp. 157–162 | 
| Reference: | [15] Hájek P.: Mathematics of Fuzzy Logic.Kluwer, Dordrecht 1998 | 
| Reference: | [16] Hájek P.: Basic fuzzy logic and BL-algebras.Soft Computing 2 (1998), 124–128 10.1007/s005000050043 | 
| Reference: | [17] Jenei S.: New family of triangular norms via contrapositive symmetrization of residuated implications.Fuzzy Sets and Systems 110 (2000), 157–174 Zbl 0941.03059, MR 1747749 | 
| Reference: | [18] Mas M., Mayor, G., Torrens J.: $t$-operators and uninorms on a finite totally ordered set.Internat. J. Intelligent Systems (Special Issue: The Mathematics of Fuzzy Sets) 14 (1999), No. 9, 909–922 Zbl 0948.68173, MR 1691482, 10.1002/(SICI)1098-111X(199909)14:9<909::AID-INT4>3.0.CO;2-B | 
| Reference: | [19] Mas M., Monserrat, M., Torrens J.: On left and right uninorms on a finite chain.Fuzzy Sets and Systems, forthcoming Zbl 1045.03029, MR 2074199 | 
| Reference: | [20] Mas M., Monserrat, M., Torrens J.: Operadores de implicación en una cadena finita.In: Proc. Estylf-2002, León, Spain 2002, pp. 297–302 | 
| Reference: | [21] Mas M., Monserrat, M., Torrens J.: On some types of implications on a finite chain.In: Proc. Summer School on Aggregation Operators 2003 (AGOP’2003), Alcalá de Henares, Spain 2003, pp. 107–112 | 
| Reference: | [22] Mayor G., Torrens J.: On a class of operators for expert systems.Internat. J. Intelligent Systems 8 (1993), No. 7, 771–778 Zbl 0785.68087, 10.1002/int.4550080703 | 
| Reference: | [23] Pei D.: $R_0$ implication: characteristics and applications.Fuzzy Sets and Systems 131 (2002), 297–302 Zbl 1015.03034, MR 1939842 | 
| Reference: | [24] Trillas E., Campo, C. del, Cubillo S.: When QM-operators are implication functions and conditional fuzzy relations.Internat. J. Intelligent Systems 15 (2000), 647–655 Zbl 0953.03031, 10.1002/(SICI)1098-111X(200007)15:7<647::AID-INT5>3.0.CO;2-T | 
| . |