Previous |  Up |  Next


bi-capacity; bipolar scales; $p$-symmetry
Bi-capacities have been recently introduced as a natural generalization of capacities (or fuzzy measures) when the underlying scale is bipolar. They allow to build more flexible models in decision making, although their complexity is of order $3^n$, instead of $2^n$ for fuzzy measures. In order to reduce the complexity, the paper proposes the notion of $p$-symmetric bi- capacities, in the same spirit as for $p$-symmetric fuzzy measures. The main idea is to partition the set of criteria (or states of nature, individuals,...) into subsets whose elements are all indifferent for the decision maker.
[1] Chateauneuf A., Jaffray J.-Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Mathematical Social Sciences 17(1989), 263–283 DOI 10.1016/0165-4896(89)90056-5 | MR 1006179 | Zbl 0669.90003
[2] Choquet G.: Theory of capacities. Annales de l’Institut Fourier 5 (1953), 131–295 DOI 10.5802/aif.53 | MR 0080760
[3] Denneberg D.: Non-additive Measures and Integral. Kluwer, Dordrecht 1994 MR 1320048
[4] Dubois D., Prade H.: A class of fuzzy measures based on triangular norms. Internat. J. General Systems 8 (1982), 43–61 DOI 10.1080/03081078208934833 | MR 0671514 | Zbl 0473.94023
[5] Grabisch M.: Pattern classification and feature extraction by fuzzy integral. In: 3d European Congress on Intelligent Techniques and Soft Computing (EUFIT, Aachen, Germany, August 1995), pp. 1465–1469
[6] Grabisch M.: Fuzzy measures and integrals: A survey of applications and recent issues. In: Fuzzy Sets Methods in Information Engineering: A Guide Tour of Applications (D. Dubois, H. Prade, and R. Yager, eds.), 1996
[8] Grabisch M.: $k$-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems 92 (1997), 167–189 DOI 10.1016/S0165-0114(97)00168-1 | MR 1486417 | Zbl 0927.28014
[9] Grabisch M., Labreuche C.: Bi-capacities. In: Proceedings of First int. Conf. on Soft Computing and Intelligent Systems (SCIC), Tsukuba (Japan), 2002 Zbl 1208.91029
[10] Grabisch M., Labreuche C.: Bi-capacities for decision making on bipolar scales. In Proceedings of the Seventh Meeting of the EURO Working Group on Fuzzy Sets (EUROFUSE) Varenna (Italy), September 2002, pp. 185–190
[11] Grabisch M., Labreuche, Ch.: Capacities on lattices and $k$-ary capacities. In: 3rd Int. Conf. of the European Soc. for Fuzzy Logic and Technology (EUSFLAT 2003), Zittau, Germany, September 2003, pp. 304–307 MR 1992695
[12] Hammer P. L., Holzman R.: On approximations of pseudo-boolean functions. Zeitschrift für Operations Research. Mathematical Methods of Operations Research 36 (1992), 3–21 DOI 10.1007/BF01541028 | MR 1141602
[13] Hungerford T. W.: Algebra. Springer-Verlag, Berlin 1980 MR 0600654 | Zbl 0442.00002
[14] Mesiar R.: $k$-order additive measures. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 7 (1999), 423–428 DOI 10.1142/S0218488599000489
[15] Miranda P., Grabisch M.: $p$-symmetric fuzzy measures. In: Proceedings of Ninth International Conference of Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU), Annecy (France), July 2002, pp. 545–552 Zbl 1068.28013
[16] Miranda P., Grabisch, M., Gil P.: $p$-symmetric fuzzy measures. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 10 (2002), 105–123. Supplement DOI 10.1142/S0218488502001867 | MR 1962672 | Zbl 1068.28013
[17] Rota G. C.: On the foundations of combinatorial theory I. Theory of Möbius functions. Z.r Wahrschein.und Verwandte Gebiete 2 (1964), 340–368 DOI 10.1007/BF00531932 | MR 0174487 | Zbl 0121.02406
[18] Sugeno M.: Theory of Fuzzy Integrals and Iits Applications. PhD Thesis, Tokyo Institute of Technology, 1974
[19] Sugeno M., Fujimoto, K., Murofushi T.: A hierarchical decomposition of Choquet integral model. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 1 (1995), 1–15 DOI 10.1142/S0218488595000025 | MR 1321933 | Zbl 1232.93010
[20] Sugeno M., Terano T.: A model of learning based on fuzzy information. Kybernetes 6 (1977), 157–166 DOI 10.1108/eb005448
[21] Tversky A., Kahneman D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk and Uncertainty 5 (1992), 297–323 DOI 10.1007/BF00122574 | Zbl 0775.90106
[22] Šipoš J.: Integral with respect to a pre-measure. Math. Slovaca 29 (1979), 141–155 MR 0578286
[23] Weber S.: $\perp $-decomposable measures and integrals for archimedean t-conorms $\perp $. J. Math. Anal. Appl. 101 (1984), 114–138 DOI 10.1016/0022-247X(84)90061-1 | MR 0746230 | Zbl 0614.28019
[24] Yager R. R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Systems, Man and Cybernetics 18 (1988), 183–190 DOI 10.1109/21.87068 | MR 0931863
Partner of
EuDML logo