Previous |  Up |  Next

Article

Title: Approximation and estimation in Markov control processes under a discounted criterion (English)
Author: Minjárez-Sosa, J. Adolfo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 6
Year: 2004
Pages: [681]-690
Summary lang: English
.
Category: math
.
Summary: We consider a class of discrete-time Markov control processes with Borel state and action spaces, and $\Re ^{k}$-valued i.i.d. disturbances with unknown density $\rho .$ Supposing possibly unbounded costs, we combine suitable density estimation methods of $\rho $ with approximation procedures of the optimal cost function, to show the existence of a sequence $\lbrace \hat{f}_{t}\rbrace $ of minimizers converging to an optimal stationary policy $f_{\infty }.$ (English)
Keyword: Markov control processes
Keyword: density estimation
Keyword: discounted cost criterion
MSC: 90B05
MSC: 90B30
MSC: 90C40
MSC: 93E10
idZBL: Zbl 1249.93163
idMR: MR2120390
.
Date available: 2009-09-24T20:05:08Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135626
.
Reference: [1] Cavazos-Cadena R.: Nonparametric adaptive control of discounted stochastic systems with compact state space.J. Optim. Theory Appl. 65 (1990), 191–207 Zbl 0699.93053, MR 1051545, 10.1007/BF01102341
Reference: [2] Devroye L., Gyorfi L.: Nonparametric Density Estimation the $L_{1}$ View.Wiley, New York 1985 MR 0780746
Reference: [3] Dynkin E. B., Yushkevich A. A.: Controlled Markov Processes.Springer–Verlag, New York 1979 MR 0554083
Reference: [4] Gordienko E. I.: Adaptive strategies for certain classes of controlled Markov processes.Theory Probab. Appl. 29 (1985), 504–518 Zbl 0577.93067
Reference: [5] Gordienko E. I., Minjárez-Sosa J. A.: Adaptive control for discrete-time Markov processes with unbounded costs: discounted criterion.Kybernetika 34 (1998), 217–234 MR 1621512
Reference: [6] Hasminskii R., Ibragimov I.: On density estimation in the view of Kolmogorov’s ideas in approximation theory.Ann. Statist. 18 (1990), 999–1010 Zbl 0705.62039, MR 1062695, 10.1214/aos/1176347736
Reference: [7] Hernández-Lerma O.: Adaptive Markov Control Processes.Springer–Verlag, New York 1989 MR 0995463
Reference: [8] Hernández-Lerma O., Cavazos-Cadena R.: Density estimation and adaptive control of Markov processes: average and discounted criteria.Acta Appl. Math. 20 (1990), 285–307 MR 1081591, 10.1007/BF00049572
Reference: [9] Hernández-Lerma O., Lasserre J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria.Springer–Verlag, New York 1996 Zbl 0840.93001, MR 1363487
Reference: [10] Hernández-Lerma O., Lasserre J. B.: Further Topics on Discrete-Time Markov Control Processes.Springer–Verlag, New York 1999 Zbl 0928.93002, MR 1697198
Reference: [11] Hernández-Lerma O., Marcus S. I.: Adaptive policies for discrete-time stochastic control systems with unknown disturbance distribution.Systems Control Lett. 9 (1987), 307–315 Zbl 0637.93075, MR 0912683, 10.1016/0167-6911(87)90055-7
Reference: [12] Hilgert N., Minjárez-Sosa J. A.: Adaptive policies for time-varying stochastic systems under discounted criterion.Math. Methods Oper. Res. 54 (2001), 491–505 Zbl 1042.93065, MR 1890916, 10.1007/s001860100170
Reference: [13] Schäl M.: Conditions for optimality and for the limit of $n$-stage optimal policies to be optimal.Z. Wahrs. Verw. Gerb. 32 (1975), 179–196 MR 0378841, 10.1007/BF00532612
.

Files

Files Size Format View
Kybernetika_40-2004-6_3.pdf 1.015Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo