Title:
|
On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes (English) |
Author:
|
Zvára, Petr |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
40 |
Issue:
|
6 |
Year:
|
2004 |
Pages:
|
[691]-702 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A non-linear AR(1) process is investigated when the associated white noise is positive. A criterion is derived for the geometric ergodicity of the process. Some explicit formulas are derived for one and two steps ahead extrapolation. Influence of parameter estimation on extrapolation is studied. (English) |
Keyword:
|
geometric ergodicity |
Keyword:
|
non-linear autoregression |
Keyword:
|
least squares extrapolation |
MSC:
|
62M10 |
MSC:
|
62M20 |
idZBL:
|
Zbl 1248.62163 |
idMR:
|
MR2120391 |
. |
Date available:
|
2009-09-24T20:05:18Z |
Last updated:
|
2015-03-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135627 |
. |
Reference:
|
[1] Anděl J.: Non-negative autoregressive processes.J. Time Ser. Anal. 10 (1989), 1–11 10.1111/j.1467-9892.1989.tb00011.x |
Reference:
|
[2] Anděl J.: On least-squares and naive extrapolations in a non-linear AR(1) process.Test 6 (1997), 91–100 MR 1466434, 10.1007/BF02564427 |
Reference:
|
[3] Anděl J., Dupač V.: Extrapolations in non-linear autoregressive processes.Kybernetika 35 (1999), 383–389 MR 1704673 |
Reference:
|
[4] Bhansali R. J.: Effects of not knowing the order of an autoregressive process on the mean squared error of prediction – I.J. Amer. Statist. Assoc. 76 (1981), 588–597 Zbl 0472.62093, MR 0629746 |
Reference:
|
[5] Bhattacharya R., Lee, Ch.: On geometric ergodicity of non-linear autoregressive models.Statist. Probab. Lett. 22 (1995), 311–315 MR 1333189, 10.1016/0167-7152(94)00082-J |
Reference:
|
[6] Cline D. B. H., Pu H.: Verifying irreducibility and continuity of a non-linear time series.Statist. Probab. Lett. 40 (1998), 139–148 MR 1650873, 10.1016/S0167-7152(98)00081-9 |
Reference:
|
[7] Datta S., Mathew, G., McCormick W. P.: Nonlinear autoregression with positive innovations.Austral. & New Zealand J. Statist. 40 (1998), 229–239 Zbl 0923.62092, MR 1631108, 10.1111/1467-842X.00026 |
Reference:
|
[8] Fuller W. A., Hasza D. P.: Predictors for the first-order autoregressive process.J. Econometrics 13 (1980), 139–157 Zbl 0521.62078, MR 0575084, 10.1016/0304-4076(80)90012-3 |
Reference:
|
[9] Lee O.: On probabilistic properties of non-linear ARMA($p,q$) models.Statist. Probab. Lett. 46 (2000), 121–131 MR 1748866, 10.1016/S0167-7152(99)00096-6 |
Reference:
|
[10] Moeanaddin R., Tong H.: Numerical evaluation of distributions in non-linear autoregression.J. Time Ser. Anal. 11 (1990), 33–48 MR 1046979, 10.1111/j.1467-9892.1990.tb00040.x |
Reference:
|
[11] Tjøstheim D.: Non-linear time series and Markov chains.Adv. in Appl. Probab. 22 (1990), 587–611 10.2307/1427459 |
Reference:
|
[12] Tong H.: Non-linear Time Series.Clarendon Press, Oxford 1990 Zbl 0835.62076 |
. |