Previous |  Up |  Next

Article

Title: The technique of splitting operators in perturbation control theory (English)
Author: Konstantinov, Mihail M.
Author: Petkov, Petko Hr.
Author: Christov, Nicolai D.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 1
Year: 2005
Pages: [15]-32
Summary lang: English
.
Category: math
.
Summary: The paper presents the technique of splitting operators, intended for perturbation analysis of control problems involving unitary matrices. Combined with the technique of Lyapunov majorants and the application of the Banach or Schauder fixed point principles, it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis problems. Among them are the reduction of linear systems into orthogonal canonical forms, the general feedback synthesis problem, and the pole assignment problem in particular, as well as other basic problems in control theory and linear algebra. (English)
Keyword: perturbation analysis
Keyword: canonical forms
Keyword: feedback synthesis
MSC: 93B10
MSC: 93B28
MSC: 93B35
MSC: 93B50
MSC: 93C05
idZBL: Zbl 1249.93057
idMR: MR2130482
.
Date available: 2009-09-24T20:06:32Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135636
.
Reference: [1] Grebenikov E. A., Ryabov, Yu. A.: Constructive Methods for Analysis of Nonlinear Systems (in Russian).Nauka, Moscow 1979 MR 0571543
Reference: [2] Hermann R., Martin C. L.: Application of algebraic geometry to systems theory.Part I. IEEE Trans. Automatic Control 22 (1977), 19–25 MR 0444172, 10.1109/TAC.1977.1101395
Reference: [3] Higham N. J.: Optimization by direct search in matrix computations.SIAM J. Matrix Anal. Appl. 14 (1993), 317–333 Zbl 0776.65047, MR 1211791, 10.1137/0614023
Reference: [4] Kantorovich L. V., Akilov G. P.: Functional Analysis in Normed Spaces.Pergamon, New York 1964 Zbl 0127.06104, MR 0213845
Reference: [5] Konstantinov M., Mehrmann, V., Petkov P.: Perturbation Analysis for the Hamiltonian Schur Form.Technical Report 98-17, Fakultät für Mathematik, TU-Chemnitz, Chemnitz 1998
Reference: [6] Konstantinov M. M., Petkov, P. Hr., Christov N. D.: Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups.Kybernetika 17 (1981), 413–424 Zbl 0474.93020, MR 0648213
Reference: [7] Konstantinov M. M., Petkov, P. Hr., Christov N. D.: Nonlocal perturbation analysis of the Schur system of a matrix.SIAM J. Matrix Anal. Appl. 15 (1994), 383–392 Zbl 0798.15010, MR 1266593, 10.1137/S089547989120267X
Reference: [8] Konstantinov M. M., Petkov, P. Hr., Christov N. D.: Sensitivity analysis of the feedback synthesis problem.IEEE Trans. Automatic Control 42 (1997), 568–573 Zbl 0878.93020, MR 1442596, 10.1109/9.566671
Reference: [9] Konstantinov M. M., Petkov P. Hr., Christov N. D., Gu D. W., Mehrmann V.: Sensitivity of Lyapunov equations.In: Advances in Intelligent Systems and Computer Science (N. E. Mastorakis, ed.). WSES Press, 1999, pp. 289–292
Reference: [10] Konstantinov M. M., Petkov P. Hr., Gu D. W., Postlethwaite I.: Perturbation Analysis in Finite Dimensional Spaces.Tech. Rep. 96–18, Engineering Department, Leicester University, Leicester 1996
Reference: [11] Konstantinov M. M., Petkov P. Hr., Gu D. W., Postlethwaite I.: Perturbation analysis of orthogonal canonical forms.Linear Algebra Appl. 251 (1997), 267–291 Zbl 0928.93012, MR 1421278
Reference: [12] Ortega J., Rheinboldt W.: Iterative Solution of Nonlinear Equations in Several Variables.Academic Press, New York 1970 Zbl 0949.65053, MR 0273810
Reference: [13] Petkov P. Hr., Christov N. D., Konstantinov M. M.: A new approach to the perturbation analysis of linear control problems.Preprints 11th IFAC World Congr., Tallin 1990, pp. 311–316 MR 0777050
Reference: [14] Petkov P. Hr., Christov N. D., Konstantinov M. M.: Computational Methods for Linear Control Systems.Prentice–Hall, New York 1991 Zbl 0790.93001
Reference: [15] Petkov P. Hr., Christov N. D., Konstantinov M. M.: Sensitivity of orthogonal canonical forms for single-input systems.In: Proc. 22nd Spring Conference of UBM, Sofia 1992, pp. 66–73
Reference: [16] Petkov P. Hr., Christov N. D., Konstantinov M. M.: Perturbation analysis of orthogonal canonical forms and pole assignment for single-input systems.In: Proc. 2nd European Control Conference, Groningen 1993, pp. 1397–1400
Reference: [17] Petkov P. Hr., Christov N. D., Konstantinov M. M.: Perturbation controllability analysis of linear multivariable systems.Preprints 12th IFAC World Congress, Sydney 1993, pp. 491–494
Reference: [18] Sun J.-G.: On perturbation bounds for the QR factorization.Linear Algebra Appl. 215 (1995), 95–111 Zbl 0816.15010, MR 1317473
Reference: [19] Sun J.-G.: Perturbation bounds for the generalized Schur decomposition.SIAM J. Matrix Anal. Appl. 16 (1995), 1328–1340 Zbl 0878.15006, MR 1351473, 10.1137/S0895479892242189
.

Files

Files Size Format View
Kybernetika_41-2005-1_2.pdf 2.342Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo