Previous |  Up |  Next


Title: Fast evaluation of thin-plate splines on fine square grids (English)
Author: Luner, Petr
Author: Flusser, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 1
Year: 2005
Pages: [97]-112
Summary lang: English
Category: math
Summary: The paper deals with effective calculation of Thin-Plate Splines (TPS). We present a new modification of hierarchical approximation scheme. Unlike 2-D schemes published earlier, we propose an 1-D approximation. The new method yields lower computing complexity while it preserves the approximation accuracy. (English)
Keyword: Thin-Plate Spline
Keyword: fast evaluation
Keyword: subtabulation
MSC: 41A15
MSC: 65D07
MSC: 65D17
MSC: 65D18
idZBL: Zbl 1249.65025
idMR: MR2131128
Date available: 2009-09-24T20:07:18Z
Last updated: 2015-03-23
Stable URL:
Reference: [1] Arad N., Dyn N., Reisfeld, D., Yeshurun Y.: Image warping by radial basis functions: Application to facial expressions.CVGIP: Graphical Models and Image Processing 56 (1994), 161–172
Reference: [2] Arad N., Gotsman C.: Enhancement by image-dependent warping.IEEE Trans. Image Processing 8 (1999), 1063–1074 10.1109/83.777087
Reference: [3] Beatson R. K., Newsam G. N.: Fast evaluation of radial basis functions.Comput. Math. Appl. 24 (1992), 7–19 Zbl 0765.65021, MR 1190302, 10.1016/0898-1221(92)90167-G
Reference: [4] Berman M.: Automated smoothing of image and other regularly spaced data.IEEE Trans. Pattern Anal. Mach. Intell. 16 (1994), 460–468 10.1109/34.291451
Reference: [5] Bookstein F. L.: Principal warps: Thin-plate splines and the decomposition of deformations.IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989), 567–585 Zbl 0691.65002, 10.1109/34.24792
Reference: [6] Carr J. C., Fright W. R., Beatson R.: Surface interpolation with radial basis functions for medical imaging.IEEE Trans. Medical Imaging 16 (1997), 96–107 10.1109/42.552059
Reference: [7] Duchon J.: Interpolation des fonctions de deux variables suivant le principle de la flexion des plaques minces.RAIRO Anal. Num. 10 (1976), 5–12 MR 0470565
Reference: [8] Flusser J.: An adaptive method for image registration.Pattern Recognition 25 (1992), 45–54 10.1016/0031-3203(92)90005-4
Reference: [9] Goshtasby A.: Registration of images with geometric distortions.IEEE Trans. Geoscience and Remote Sensing 26 (1988), 60–64 10.1109/36.3000
Reference: [10] Greengard L., Rokhlin V.: A fast algorithm for particle simulations.J. Comput. Phys. 73 (1987), 325–348 Zbl 0629.65005, MR 0918448, 10.1016/0021-9991(87)90140-9
Reference: [11] Grimson W. E. L.: A computational theory of visual surface interpolation.Philos. Trans. Roy. Soc. London Ser. B 298 (1982), 395–427 10.1098/rstb.1982.0088
Reference: [12] Harder R. L., Desmarais R. N.: Interpolation using surface splines.J. Aircraft 9 (1972), 189–191 10.2514/3.44330
Reference: [13] Kašpar R., Zitová B.: Weighted thin-plate spline image denoising.Pattern Recognition 36 (2003), 3027–3030 Zbl 1059.68150, 10.1016/S0031-3203(03)00133-X
Reference: [14] Powell M. J. D.: Tabulation of thin plate splines on a very fine two-dimensional grid.In: Numerical Methods of Approximation Theory, Volume 9 (D. Braess and L. L. Schumacher, eds.), Birkhäuser Verlag, Basel, 1992, pp. 221–244 Zbl 0813.65014, MR 1269364
Reference: [15] Powell M. J. D.: Tabulation of Thin Plate Splines on a Very Fine Two-Dimensional Grid.Numerical Analysis Report of University of Cambridge, DAMTP/1992/NA2, Cambridge 1992 Zbl 0813.65014, MR 1269364
Reference: [16] Rohr K., Stiehl H. S., Buzug T. M., Weese, J., Kuhn M. H.: Landmark-based elastic registration using approximating thin-plate splines.IEEE Trans. Medical Imaging 20 (2001), 526–534 10.1109/42.929618
Reference: [17] Wahba G.: Spline Models for Observational Data.SIAM, Philadelphia 1990 Zbl 0813.62001, MR 1045442
Reference: [18] Wolberg G.: Digital Image Warping.IEEE Computer Society Press, 1990


Files Size Format View
Kybernetika_41-2005-1_8.pdf 2.481Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo