Full entry |
PDF
(3.1 MB)
Feedback

possibilistic measure; almost-maxitive approximation; fuzzy measure; complete lattice; lattice-valued measure

References:

[1] Bělohlávek R.: **Fuzzy Relational Systems: Foundations and Principles**. Kluwer Academic/Plenum Publishers, New York 2002 Zbl 1067.03059

[2] Birkhoff G.: **Lattice Theory**. Third edition. Amer. Math. Society, Providence, RI 1967 MR 0227053 | Zbl 0537.06001

[3] Cooman G. De: **Possibility theory I, II, III**. Internat. J. Gen. Systems 25 (1997), 4, 291–323, 325–351, 353–371

[4] Dubois D., Prade H.: **Théorie des Possibilités – Applications à la Représentation des Connoissances en Informatique**. Mason, Paris 1985

[5] Dubois D., Nguyen, H., Prade H.: **Possibility theory, probability theory and fuzzy sets: misunderstandings, bridges and gaps**. In: The Handbook of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Boston 2000, pp. 343–438

[6] Faure R., Heurgon E.: **Structures Ordonnées et Algèbres de Boole**. Gauthier–Villars, Paris 1971 MR 0277440 | Zbl 0219.06001

[7] Goguen J. A.: **L-fuzzy sets**. J. Math. Anal. Appl. 18 (1967), 145–174 DOI 10.1016/0022-247X(67)90189-8 | MR 0224391 | Zbl 0145.24404

[8] Kramosil I.: **Extensions of partial lattice-valued possibility measures**. Neural Network World 13 (2003), 4, 361–384

[9] Kramosil I.: **Almost-measurability relation induced by lattice-valued partial possibilistic measures**. Internat. J. Gen. Systems 33 (2004), 6, 679–704 DOI 10.1080/0308107042000193543 | MR 2105803 | Zbl 1155.28304

[10] Sikorski R.: **Boolean Algebras**. Second edition. Springer–Verlag, Berlin – Göttingen – Heidelberg – New York 1964 Zbl 0191.31505

[11] Zadeh L. A.: **Fuzzy sets as a basis for a theory of possibility**. Fuzzy Sets and Systems 1 (1978), 1, 3–28 DOI 10.1016/0165-0114(78)90029-5 | MR 0480045