Previous |  Up |  Next

Article

Title: The cancellation law for pseudo-convolution (English)
Author: Stupňanová, Andrea
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 3
Year: 2005
Pages: [285]-296
Summary lang: English
.
Category: math
.
Summary: Cancellation law for pseudo-convolutions based on triangular norms is discussed. In more details, the cases of extremal t-norms $T_M$ and $T_D$, of continuous Archimedean t-norms, and of general continuous t-norms are investigated. Several examples are included. (English)
Keyword: cancellation law
Keyword: t-norm
Keyword: pseudo-convolution
MSC: 03E72
MSC: 28E10
idZBL: Zbl 1249.03103
idMR: MR2181419
.
Date available: 2009-09-24T20:08:53Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135656
.
Reference: [1] Baets B. De, Marková-Stupňanová A.: Analytical expressions for the addition of fuzzy intervals.Fuzzy Sets and Systems 91 (1997), 203–213 Zbl 0919.04005, MR 1480046, 10.1016/S0165-0114(97)00141-3
Reference: [2] Golan J. S.: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Sciences.(Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 54.) Longman, New York 1992 MR 1163371
Reference: [3] Klement E.-P., Mesiar, R., Pap E.: Problems on triangular norms and related operators.Fuzzy Sets and Systems 145 (2004), 471–479 Zbl 1050.03019, MR 2075842
Reference: [4] Klement E.-P., Mesiar, R., Pap E.: Triangular Norms.(Trends in Logic, Studia Logica Library, Vol. 8.) Kluwer Academic Publishers, Dortrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [5] Mareš M.: Computation Over Fuzzy Quantities.CRC Press, Boca Raton 1994 Zbl 0859.94035, MR 1327525
Reference: [6] Marková A.: T-sum of L-R fuzzy numbers.Fuzzy Sets and Systems 85 (1997), 379–384 MR 1428314, 10.1016/0165-0114(95)00370-3
Reference: [7] Marková-Stupňanová A.: A note on the idempotent functions with respect to pseudo-convolution.Fuzzy Sets and Systems 102 (1999), 417–421 Zbl 0953.28012, MR 1676908
Reference: [8] Mesiar R.: Shape preserving additions of fuzzy intervals.Fuzzy Sets and Systems 86 (1997), 73–78 Zbl 0921.04002, MR 1438439, 10.1016/0165-0114(95)00401-7
Reference: [9] Mesiar R.: Triangular-norm-based addition of fuzzy intervals.Fuzzy Sets and Systems 91 (1997), 231–237 Zbl 0919.04011, MR 1480048, 10.1016/S0165-0114(97)00143-7
Reference: [10] Moynihan R.: On the class of $\tau _T$ semigroups of probability distribution functions.Aequationes Math. 12 (1975), 2/3, 249–261 Zbl 0309.60013, MR 0383496, 10.1007/BF01836553
Reference: [11] Murofushi T., Sugeno M. : Fuzzy t-conorm integrals with respect to fuzzy measures: generalizations of Sugeno integral and Choquet integral.Fuzzy Sets and Systems 42 (1991), 51–57 MR 1123577
Reference: [12] Pap E.: Decomposable measures and nonlinear equations.Fuzzy Sets and Systems 92 (1997), 205–221 Zbl 0934.28015, MR 1486420, 10.1016/S0165-0114(97)00171-1
Reference: [13] Pap E.: Null-Additive Set Functions.Ister Science & Kluwer Academic Publishers, Dordrecht 1995 Zbl 1003.28012, MR 1368630
Reference: [14] Pap E., Štajner I.: Pseudo-convolution in the theory of optimalization, probabilistic metric spaces, information, fuzzy numbers, system theory.In: Proc. IFSA’97, Praha 1997, pp. 491–495
Reference: [15] Pap E., Štajner I.: Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, system theory.Fuzzy Sets and Systems 102 (1999), 393–415 MR 1676907
Reference: [16] Pap E., Teofanov N.: Pseudo-delta sequences.Yugoslav. J. Oper. Res. 8 (1998), 111–128 MR 1621522
Reference: [17] Riedel T.: On $\sup $-continuous triangle functions.J. Math. Anal. Appl. 184 (1994), 382–388 Zbl 0802.60022, MR 1278396, 10.1006/jmaa.1994.1207
Reference: [18] Sugeno M. , Murofushi T.: Pseudo-additive measures and integrals.J. Math. Anal. Appl. 122 (1987), 197– 222 Zbl 0611.28010, MR 0874969, 10.1016/0022-247X(87)90354-4
Reference: [19] Wang Z., Klir G. J.: Fuzzy Measure Theory.Plenum Press, New York 1992 Zbl 0812.28010, MR 1212086
Reference: [20] Zagrodny D.: The cancellation law for inf-convolution of convex functions.Studia Mathematika 110 (1994), 3, 271–282 Zbl 0811.49012, MR 1292848
.

Files

Files Size Format View
Kybernetika_41-2005-3_2.pdf 1.524Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo