Previous |  Up |  Next

Article

Title: Semicopulas: characterizations and applicability (English)
Author: Durante, Fabrizio
Author: Quesada-Molina, José
Author: Sempi, Carlo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 3
Year: 2006
Pages: 287-302
Summary lang: English
.
Category: math
.
Summary: We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given. (English)
Keyword: semicopula
Keyword: quasi-copula
Keyword: Lipschitz condition
Keyword: aggregation operator
MSC: 03E72
MSC: 26B35
MSC: 60E05
MSC: 60E15
idZBL: Zbl 1249.60016
idMR: MR2253390
.
Date available: 2009-09-24T20:16:00Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135715
.
Reference: [1] Alsina C., Frank M. J., Schweizer B.: Problems on associative functions.Aequationes Math. 66 (2003), 128–140 Zbl 1077.39021, MR 2003460, 10.1007/s00010-003-2673-y
Reference: [2] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions.Statist. Probab. Lett. 17 (1993), 85–89 Zbl 0798.60023, MR 1223530, 10.1016/0167-7152(93)90001-Y
Reference: [3] Axler S., Bourdon, P., Ramey W.: Harmonic Function Theory.(Graduate Texts in Mathematics 137.) Springer–Verlag, New York 2001 Zbl 0959.31001, MR 1805196
Reference: [4] Baets B. De: Analytical solution methods for fuzzy relational equations.In: Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Chapter 6, Vol. 1, Kluwer Academic Publishers, Dordrecht 2000, pp. 291–340 Zbl 0970.03044, MR 1890236
Reference: [5] Baets B. De, Meyer H. De: Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity.Fuzzy Sets and Systems 152 (2005), 249–270 Zbl 1114.91031, MR 2138509
Reference: [6] Baets B. De, Meyer H. De, Schuymer, B. De, Jenei S.: Cycle evaluation of transitivity of reciprocal relations.Soc. Choice Welfare. To appear
Reference: [7] Schuymer B. De, Meyer, H. De, Baets B. De: On some forms of cycle-transitivity and their relation to commutative copulas.In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 178–182
Reference: [8] Bassan B., Spizzichino F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes.J. Multivariate Anal. 93 (2005), 313–339 Zbl 1070.60015, MR 2162641, 10.1016/j.jmva.2004.04.002
Reference: [9] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods.In: Aggregation Operators. New Trends and Applications (T. Calvo, R. Mesiar, and G. Mayor, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–106 Zbl 1039.03015, MR 1936383
Reference: [10] Denneberg D.: Non-additive Measure and Integral.Kluwer Academic Publishers, Dordrecht 1994 Zbl 0968.28009, MR 1320048
Reference: [11] Durante F.: What is a semicopula? In: Proc.AGOP – Summer School on Aggregation Operators, Lugano 2005, pp. 51–56
Reference: [12] Durante F.: A new class of symmetric bivariate copulas.Preprint n. 19, Dipartimento di Matematica E. De Giorgi, Lecce, 2005 MR 2311801
Reference: [13] Durante F., Mesiar, R., Sempi C.: On a family of copulas constructed from the diagonal section.Soft Computing 10 (2006), 490–494 Zbl 1098.60016, 10.1007/s00500-005-0523-7
Reference: [14] Durante F., Quesada-Molina J. J., Sempi C.: A generalization of the Archimedean class of bivariate copulas.Ann. Inst. Statist. Math. (2006), to appear MR 2388803
Reference: [15] Durante F., Sempi C.: Semicopulæ.Kybernetika 41 (2005), 315–328 MR 2181421
Reference: [16] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.: A characterization of quasi-copulas.J. Multivariate Anal. 69 (1999), 193–205 MR 1703371, 10.1006/jmva.1998.1809
Reference: [17] Ricci R. Ghiselli, Mesiar R.: $k$-Lipschitz strict triangular norms.In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 1307–1312
Reference: [18] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [19] Kolmogorov A. N.: Grundbegriffe der Wahrscheinlichkeitsrechnung.Springer–Verlag, Berlin 1933. Reprinted in: Foundations of the Theory of Probability. Chelsea, Bronxm NY 1950 Zbl 0007.21601, MR 0494348
Reference: [20] Mesiarová A.: $k$-Lipschitz aggregation operators.In: Proc. AGOP – Summer School on Aggregation Operators, Lugano 2005, pp. 89–92
Reference: [21] Mesiarová A.: Triangular norms and $k$-Lipschitz property.In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 922–926
Reference: [22] Nelsen R. B.: An Introduction to Copulas.(Lecture Notes in Statistics 139.) Springer–Verlag, New York 1999 Zbl 1152.62030, MR 1653203, 10.1007/978-1-4757-3076-0
Reference: [23] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions.J. Multivariate Anal. 90 (2004), 348–358 Zbl 1057.62038, MR 2081783, 10.1016/j.jmva.2003.09.002
Reference: [24] Nelsen R. B.: Copulas and quasi-copulas: an introduction to their properties and applications.In: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms (E. P. Klement and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413 Zbl 1079.60021, MR 2165243
Reference: [25] Rodríguez-Lallena J. A., Úbeda-Flores M.: A new class of bivariate copulas.Statist. Probab. Lett. 66 (2004), 315–325 Zbl 1102.62054, MR 2045476, 10.1016/j.spl.2003.09.010
Reference: [26] Scarsini M.: Copulæ of capacities on product spaces.In: Distribution Functions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), Institute of Mathematical Statistics (Lecture Notes – Monograph Series Volume 28), Hayward 1996, pp. 307–318 MR 1485540
Reference: [27] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North Holland, New York 1983. 2nd edition: Dover Publications, Mineola, New York 2005 Zbl 0546.60010, MR 0790314
Reference: [28] Stromberg K. R.: An Introduction to Classical Real Analysis.Chapman & Hall, London 1981 Zbl 0454.26001, MR 0604364
.

Files

Files Size Format View
Kybernetika_42-2006-3_4.pdf 787.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo