Previous |  Up |  Next

Article

Title: A contour view on uninorm properties (English)
Author: Maes, Koen C.
Author: De Baets, Bernard
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 3
Year: 2006
Pages: 303-318
Summary lang: English
.
Category: math
.
Summary: Any given increasing $[0,1]^2\rightarrow [0,1]$ function is completely determined by its contour lines. In this paper we show how each individual uninorm property can be translated into a property of contour lines. In particular, we describe commutativity in terms of orthosymmetry and we link associativity to the portation law and the exchange principle. Contrapositivity and rotation invariance are used to characterize uninorms that have a continuous contour line. (English)
Keyword: uninorm
Keyword: Contour line
Keyword: Orthosymmetry
Keyword: Portation law
Keyword: Exchange principle
Keyword: Contrapositive symmetry
Keyword: Rotation invariance
Keyword: Self quasi-inverse property
MSC: 03B52
MSC: 03E72
MSC: 06F05
MSC: 26B40
idZBL: Zbl 1249.26022
idMR: MR2253391
.
Date available: 2009-09-24T20:16:09Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135716
.
Reference: [1] Birkhoff G.: Lattice Theory.Third edition. (AMS Colloquium Publications, Vol. 25.) American Mathematical Society, Providence, Rhode Island 1967 Zbl 0537.06001, MR 0227053
Reference: [2] Baets B. De: Coimplicators, the forgotten connectives.Tatra Mt. Math. Publ. 12 (1997), 229–240 Zbl 0954.03029, MR 1607142
Reference: [3] Baets B. De: Idempotent uninorms.European J. Oper. Res. 118 (1999), 631–642 Zbl 0933.03071, 10.1016/S0377-2217(98)00325-7
Reference: [4] Baets B. De, Fodor J.: Residual operators of uninorms.Soft Computing 3 (1999), 89–100 10.1007/s005000050057
Reference: [5] Baets B. De, Fodor J.: van Melle’s combining function in MYCIN is a representable uninorm: An alternative proof.Fuzzy Sets and Systems 104 (1999), 133–136 Zbl 0928.03060, MR 1685816
Reference: [6] Baets B. De, Mesiar R.: Metrics and T-equalities.J. Math. Anal. Appl. 267 (2002), 331–347 MR 1888022
Reference: [7] Dombi J.: Basic concepts for the theory of evaluation: the aggregative operator.European J. Oper. Res. 10 (1982), 282–293 MR 0665480, 10.1016/0377-2217(82)90227-2
Reference: [8] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer Academic Publishers, Dordrecht 1994 Zbl 0827.90002
Reference: [9] Fodor J., Yager, R., Rybalov A.: Structure of uninorms.Internat. J. Uncertain Fuzz. 5 (1997), 411–427 Zbl 1232.03015, MR 1471619, 10.1142/S0218488597000312
Reference: [10] Golan J.: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science.Addison–Wesley Longman Ltd., Essex 1992 Zbl 0780.16036, MR 1163371
Reference: [11] Jenei S.: Geometry of left-continuous t-norms with strong induced negations.Belg. J. Oper. Res. Statist. Comput. Sci. 38 (1998), 5–16 MR 1774255
Reference: [12] Jenei S.: Structure of left-continuous triangular norms with strong induced negations.(I) Rotation construction. J. Appl. Non-Classical Logics 10 (2000), 83–92 Zbl 1050.03505, MR 1826844, 10.1080/11663081.2000.10510989
Reference: [13] Jenei S.: Structure of left-continuous triangular norms with strong induced negations.(II) Rotation-annihilation construction. J. Appl. Non-Classical Logics 11 (2001), 351–366 Zbl 1050.03505, MR 1916884, 10.3166/jancl.11.351-366
Reference: [14] Jenei S.: Structure of left-continuous triangular norms with strong induced negations.(III) Construction and decomposition. Fuzzy Sets and Systems 128 (2002), 197–208 Zbl 1050.03505, MR 1908426
Reference: [15] Jenei S.: How to construct left-continuous triangular norms – state of the art.Fuzzy Sets and Systems 143 (2004), 27–45 Zbl 1040.03021, MR 2060271
Reference: [16] Jenei S.: On the determination of left-continuous t-norms and continuous Archimedean t-norms on some segments.Aequationes Math. 70 (2005), 177–188 Zbl 1083.39023, MR 2167993, 10.1007/s00010-004-2759-1
Reference: [17] Klement E. P., Mesiar, R., Pap E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms.Fuzzy Sets and Systems 104 (1999), 3–13 Zbl 0953.26008, MR 1685803
Reference: [18] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.(Trends in Logic, Vol. 8.) Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [19] Klement E. P., Mesiar, R., Pap E.: Different types of continuity of triangular norms revisited.New Mathematics and Natural Computation 1 (2005), 195–211 Zbl 1081.26024, MR 2158962, 10.1142/S179300570500010X
Reference: [20] Maes K. C., Baets B. De: Orthosymmetrical monotone functions.B. Belg. Math. Soc.-Sim., to appear Zbl 1142.26007, MR 2327329
Reference: [21] Ruiz D., Torrens J.: Residual implications and co-implications from idempotent uninorms.Kybernetika 40 (2004), 21–38 MR 2068596
Reference: [22] Schweizer B., Sklar A.: Probabilistic Metric Spaces.Elsevier Science, New York 1983 Zbl 0546.60010, MR 0790314
Reference: [23] Yager R., Rybalov A.: Uninorm aggregation operators.Fuzzy Sets and Systems 80 (1996), 111–120 Zbl 0871.04007, MR 1389951, 10.1016/0165-0114(95)00133-6
.

Files

Files Size Format View
Kybernetika_42-2006-3_5.pdf 768.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo