Title:
|
A new family of trivariate proper quasi-copulas (English) |
Author:
|
Úbeda-Flores, Manuel |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
43 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
75-85 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we provide a new family of trivariate proper quasi-copulas. As an application, we show that $W^{3}$ – the best-possible lower bound for the set of trivariate quasi-copulas (and copulas) – is the limit member of this family, showing how the mass of $W^3$ is distributed on the plane $x+y+z=2$ of $[0,1]^3$ in an easy manner, and providing the generalization of this result to $n$ dimensions. (English) |
Keyword:
|
copula |
Keyword:
|
mass distribution |
Keyword:
|
quasi-copula |
MSC:
|
60E05 |
MSC:
|
62H05 |
idZBL:
|
Zbl 1131.62048 |
idMR:
|
MR2343332 |
. |
Date available:
|
2009-09-24T20:21:19Z |
Last updated:
|
2013-09-21 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135755 |
. |
Reference:
|
[1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions.Statist. Probab. Lett. 17 (1993), 85–89 Zbl 0798.60023, MR 1223530, 10.1016/0167-7152(93)90001-Y |
Reference:
|
[2] Beliakov G., Calvo, T., Lázaro J.: Pointwise construction of Lipschitz aggregation operators.In: Proc. Information and Management of Uncertainty in Knowledge-Based Systems (IPMU) 2006, pp. 595–601 Zbl 1120.68099 |
Reference:
|
[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods.In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica-Verlag, Heidelberg 2002, pp. 3–105 Zbl 1039.03015, MR 1936383 |
Reference:
|
[4] Cuculescu, I., Theodorescu R.: Copulas: diagonals and tracks.Rev. Roumaine Math. Pures Appl. 46 (2001), 731–742 MR 1929521 |
Reference:
|
[5] Dall’Aglio G.: Fréchet classes and compatibility of distribution functions.Symp. Math. 9 (1972), 131–150 Zbl 0243.60007, MR 0339311 |
Reference:
|
[6] Baets, B. De, Meyer H. De: Orthogonal grid constructions of copulas.IEEE Trans. Fuzzy Systems (to appear) |
Reference:
|
[7] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Mass distribution associated with a trivariate quasi-copula.Preprint, 2006 Zbl 1131.62044 |
Reference:
|
[8] Durante F.: Generalized composition of binary aggregation operators.Internat. J. Uncertainty, Fuzziness and Knowledge-Based Syst. 13 (2005), 567–577 Zbl 1137.62353, MR 2198350, 10.1142/S0218488505003679 |
Reference:
|
[9] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas.Fuzzy Sets Syst. 148 (2004), 263–278 Zbl 1057.81011, MR 2100199 |
Reference:
|
[10] Klement E. P., Kolesárová A.: 1–Lipschitz aggregation operators, quasi-copulas and copulas with given diagonals.In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211 Zbl 1071.62048, MR 2118098 |
Reference:
|
[11] Klement E. P., Kolesárová A.: Extension to copulas and quasi-copulas as special 1–Lipschitz aggregation operators.Kybernetika 41 (2005), 329–348 MR 2181422 |
Reference:
|
[12] Kolesárová A.: 1–Lipschitz aggregation operators and quasi-copulas.Kybernetika 39 (2003), 615–629 MR 2042344 |
Reference:
|
[13] Nelsen R. B.: Copulas and quasi-copulas: An introduction to their properties and applications.In: Logical, algebraic, analytic, and probabilistic aspects of triangular norms (E. P. Klement, and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413 Zbl 1079.60021, MR 2165243 |
Reference:
|
[14] Nelsen R. B.: An Introduction to Copulas.Second Edition. Springer, New York 2006 Zbl 1152.62030, MR 2197664 |
Reference:
|
[15] Nelsen R. B., Úbeda-Flores M.: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas.CR Acad. Sci. Paris, Ser. I 341 (2005), 583–586 Zbl 1076.62053, MR 2182439, 10.1016/j.crma.2005.09.026 |
Reference:
|
[16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Multivariate Archimedean quasi-copulas.In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 187–194 Zbl 1135.62338, MR 2058991 |
Reference:
|
[17] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions.J. Multivariate Anal. 90 (2004), 348–358 Zbl 1057.62038, MR 2081783, 10.1016/j.jmva.2003.09.002 |
Reference:
|
[18] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: On the construction of copulas and quasi-copulas with given diagonal sections.Insurance Math. Econom. (to appear) Zbl 1152.60311, MR 2404309 |
Reference:
|
[19] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.: Derivability of some operations on distribution functions.In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), IMS Lecture Notes-Monograph Series Number 28, Hayward 1996, pp. 233–243 MR 1485535 |
Reference:
|
[20] Quesada-Molina J. J., Rodríguez-Lallena J. A.: Some advances in the study of the compatibility of three bivariate copulas.J. Ital. Statist. Soc. 3 (1994), 397–417 10.1007/BF02589026 |
Reference:
|
[21] Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of multivariate distribution functions.Comm. Statist. Theory Methods 33 (2004), 805–820 Zbl 1066.62056, MR 2042768 |
Reference:
|
[22] Rodríguez-Lallena J. A., Úbeda-Flores M.: Compatibility of three bivariate quasi-copulas: Applications to copulas.In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 173–180 Zbl 1064.62060, MR 2118094 |
Reference:
|
[23] Sklar A.: Fonctions de répartition $\grave{\mathrm a}$ $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600 |
Reference:
|
[24] Sklar A.: Random variables, joint distribution functions, and copulas.Kybernetika 9 (1973), 449–460 Zbl 0292.60036, MR 0345164 |
. |