Previous |  Up |  Next

Article

Title: $G_\delta$-separation axioms in ordered fuzzy topological spaces (English)
Author: Roja, Elango
Author: Uma, Mallasamudram Kuppusamy
Author: Balasubramanian, Ganesan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 1
Year: 2007
Pages: 103-111
Summary lang: English
.
Category: math
.
Summary: $G_\delta$-separation axioms are introduced in ordered fuzzy topological spaces and some of their basic properties are investigated besides establishing an analogue of Urysohn’s lemma. (English)
Keyword: fuzzy $G_\delta$-neighbourhood
Keyword: fuzzy $G_\delta$–$T_1$-ordered spaces
Keyword: fuzzy $G_\delta$–$T_2$ ordered spaces
MSC: 03E72
MSC: 54A40
idZBL: Zbl 1156.54004
idMR: MR2343335
.
Date available: 2009-09-24T20:21:56Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/135758
.
Reference: [1] Azad K. A.: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity.J. Math. Anal. Appl. 82 (1981), 14–32 Zbl 0511.54006, MR 0626738, 10.1016/0022-247X(81)90222-5
Reference: [2] Balasubramanian G.: Maximal fuzzy topologies.Kybernetika 31 (1995), 459–464 Zbl 0856.54004, MR 1361307
Reference: [3] Chang C. L.: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182–190 Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7
Reference: [4] Katsaras A. K.: Ordered fuzzy topological spaces.J. Math. Anal. Appl. 84 (1981), 44–58 Zbl 0512.54005, MR 0639523, 10.1016/0022-247X(81)90150-5
Reference: [5] Smets P.: The degree of belief in a fuzzy event.Inform. Sci. 25 (1981), 1–19 Zbl 0472.62005, MR 0651984, 10.1016/0020-0255(81)90008-6
Reference: [6] Sostak A. P.: On a fuzzy topological structure.Suppl. Rend. Circ. Mat. Palermo 11 (1985), 89–103 Zbl 0638.54007, MR 0897975
Reference: [7] Sostak A. P.: Basic structure of fuzzy topology.J. Math. Sci. 78 (1996), 662–701 MR 1384343, 10.1007/BF02363065
Reference: [8] Sugeno M.: An introductory survey of fuzzy control.Inform. Sci. 36 (1985), 59–83 Zbl 0586.93053, MR 0813765, 10.1016/0020-0255(85)90026-X
Reference: [9] Warren R. H.: Neighbourhoods, bases and continuity in fuzzy topological spaces.Rocky Mountain J. Math. 8 (1978), 459–470 MR 0478091, 10.1216/RMJ-1978-8-3-459
Reference: [10] Zadeh L. A.: Fuzzy sets.Inform. Control 8 (1965), 338–353 Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
.

Files

Files Size Format View
Kybernetika_43-2007-1_9.pdf 762.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo