Title:
|
$G_\delta$-separation axioms in ordered fuzzy topological spaces (English) |
Author:
|
Roja, Elango |
Author:
|
Uma, Mallasamudram Kuppusamy |
Author:
|
Balasubramanian, Ganesan |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
43 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
103-111 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
$G_\delta$-separation axioms are introduced in ordered fuzzy topological spaces and some of their basic properties are investigated besides establishing an analogue of Urysohn’s lemma. (English) |
Keyword:
|
fuzzy $G_\delta$-neighbourhood |
Keyword:
|
fuzzy $G_\delta$–$T_1$-ordered spaces |
Keyword:
|
fuzzy $G_\delta$–$T_2$ ordered spaces |
MSC:
|
03E72 |
MSC:
|
54A40 |
idZBL:
|
Zbl 1156.54004 |
idMR:
|
MR2343335 |
. |
Date available:
|
2009-09-24T20:21:56Z |
Last updated:
|
2013-09-21 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135758 |
. |
Reference:
|
[1] Azad K. A.: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity.J. Math. Anal. Appl. 82 (1981), 14–32 Zbl 0511.54006, MR 0626738, 10.1016/0022-247X(81)90222-5 |
Reference:
|
[2] Balasubramanian G.: Maximal fuzzy topologies.Kybernetika 31 (1995), 459–464 Zbl 0856.54004, MR 1361307 |
Reference:
|
[3] Chang C. L.: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182–190 Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7 |
Reference:
|
[4] Katsaras A. K.: Ordered fuzzy topological spaces.J. Math. Anal. Appl. 84 (1981), 44–58 Zbl 0512.54005, MR 0639523, 10.1016/0022-247X(81)90150-5 |
Reference:
|
[5] Smets P.: The degree of belief in a fuzzy event.Inform. Sci. 25 (1981), 1–19 Zbl 0472.62005, MR 0651984, 10.1016/0020-0255(81)90008-6 |
Reference:
|
[6] Sostak A. P.: On a fuzzy topological structure.Suppl. Rend. Circ. Mat. Palermo 11 (1985), 89–103 Zbl 0638.54007, MR 0897975 |
Reference:
|
[7] Sostak A. P.: Basic structure of fuzzy topology.J. Math. Sci. 78 (1996), 662–701 MR 1384343, 10.1007/BF02363065 |
Reference:
|
[8] Sugeno M.: An introductory survey of fuzzy control.Inform. Sci. 36 (1985), 59–83 Zbl 0586.93053, MR 0813765, 10.1016/0020-0255(85)90026-X |
Reference:
|
[9] Warren R. H.: Neighbourhoods, bases and continuity in fuzzy topological spaces.Rocky Mountain J. Math. 8 (1978), 459–470 MR 0478091, 10.1216/RMJ-1978-8-3-459 |
Reference:
|
[10] Zadeh L. A.: Fuzzy sets.Inform. Control 8 (1965), 338–353 Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X |
. |