[1] Baczyński M., Jayaram B.: 
On the characterizations of $(S,N)$-implications. Fuzzy Sets and Systems 158 (2007), 1713–1727 
MR 2341333 | 
Zbl 1168.03322[2] Balasubramaniam J.: 
Contrapositive symmetrization of fuzzy implications – Revisited. Fuzzy Sets and Systems 157 (2006), 2291–2310 
MR 2251837[3] Balasubramaniam J.: 
Yager’s new class of implications $J_f$ and some classical tautologies. Inform. Sci. 177 (2007), 930–946 
MR 2288674 | 
Zbl 1142.68539[4] Dubois D., Prade H.: 
Fuzzy sets in approximate reasoning. Part I. Inference with possibility distributions. Fuzzy Sets and Systems 40 (1991), 143–202 
MR 1103660 | 
Zbl 0722.03018[5] Fodor J. C., Roubens M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994
[8] Klir G. J., Yuan, Bo: 
Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall, Englewood Cliffs, N.J. 1995 
MR 1329731 | 
Zbl 0915.03001[9] Pei D.: 
$R_0$ implication: characteristics and applications. Fuzzy Sets and Systems 131 (2002), 297-302 
MR 1939842 | 
Zbl 1015.03034[10] Trillas E., Valverde L.: 
On some functionally expressable implications for fuzzy set theory. In: Proc. 3rd Internat. Seminar on Fuzzy Set Theory (E. P. Klement, ed.), Johannes Kepler Universität, Linz 1981, pp. 173–190 
MR 0646807 | 
Zbl 0498.03015[11] Türksen I. B., Kreinovich, V., Yager R. R.: 
A new class of fuzzy implications – Axioms of fuzzy implication revisited. Fuzzy Sets and Systems 100 (1998), 267–272 
MR 1663741 | 
Zbl 0939.03030[12] Yager R. R.: 
On some new classes of implication operators and their role in approximate reasoning. Inform. Sci. 167 (2004), 193–216 
MR 2103181 | 
Zbl 1095.68119