Previous |  Up |  Next

Article

Title: On Gaussian conditional independence structures (English)
Author: Lněnička, Radim
Author: Matúš, František
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 3
Year: 2007
Pages: 327-342
Summary lang: English
.
Category: math
.
Summary: The simultaneous occurrence of conditional independences among subvectors of a regular Gaussian vector is examined. All configurations of the conditional independences within four jointly regular Gaussian variables are found and completely characterized in terms of implications involving conditional independence statements. The statements induced by the separation in any simple graph are shown to correspond to such a configuration within a regular Gaussian vector. (English)
Keyword: multivariate Gaussian distribution
Keyword: positive definite matrices
Keyword: determinants
Keyword: principal minors
Keyword: conditional independence
Keyword: probabilistic representability
Keyword: semigraphoids
Keyword: separation graphoids
Keyword: gaussoids
Keyword: covariance selection models
Keyword: Markov perfectness
MSC: 15A15
MSC: 60E05
idZBL: Zbl 1144.60302
idMR: MR2362722
.
Date available: 2009-09-24T20:24:13Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135777
.
Reference: [1] Cox D., Little, J., O’Shea D.: Ideals, Varieties, and Algorithms.An Introduction to Computational Algebraic Geometry and Commutative Algebra. Second Edition. Springer-Verlag, New York 1997 Zbl 1118.13001, MR 1417938
Reference: [2] Dawid A. P.: Conditional independence in statistical theory.J. Roy. Statist. Soc. Ser. B 41 (1979), 1–31 Zbl 0408.62004, MR 0535541
Reference: [3] Dawid A. P.: Conditional independence for statistical operations.Ann. Statist. 8 (1980), 598–617 Zbl 0434.62006, MR 0568723
Reference: [4] Dempster A. P.: Covariance selection.Biometrics 28 (1972), 157–175
Reference: [5] Frydenberg M.: Marginalization and collapsibility in graphical interaction models.Ann. Statist. 18 (1990), 790–805 Zbl 0725.62057, MR 1056337
Reference: [7] Kauermann G.: On a dualization of graphical Gaussian models.Scand. J. Statist. 23 (1996), 105–116 Zbl 0912.62006, MR 1380485
Reference: [8] Kurosh A.: Higher Algebra.Mir Publishers, Moscow 1975 Zbl 0546.00002, MR 0384363
Reference: [9] Lauritzen S. L.: Graphical Models.(Oxford Statistical Science Series 17.) Oxford University Press, New York 1996 Zbl 1055.62126, MR 1419991
Reference: [10] Levitz M., Perlman M. D., Madigan D.: Separation and completeness properties for AMP chain graph Markov models.Ann. Statist. 29 (2001), 1751–1784 Zbl 1043.62080, MR 1891745
Reference: [11] Lněnička R.: On conditional independences among four Gaussian variables.In: Proc. Conditionals, Information, and Inference – WCII’04 (G. Kern-Isberner, W. Roedder, and F. Kulmann, eds.), Universität Ulm, Ulm 2004, pp. 89–101
Reference: [12] Matúš F.: Ascending and descending conditional independence relations.In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (S. Kubík and J. Á. Víšek, eds.), Vol. B, Academia, Prague, and Kluwer, Dordrecht 1991, pp. 189–200
Reference: [13] Matúš F.: On equivalence of Markov properties over undirected graphs.J. Appl. Probab. 29 (1992), 745–749 Zbl 0753.68080, MR 1174448
Reference: [14] Matúš F.: Conditional independences among four random variables II.Combin. Probab. Comput. 4 (1995), 407–417 Zbl 0846.60004, MR 1377558
Reference: [15] Matúš F.: Conditional independence structures examined via minors.Ann. Math. Artif. Intell. 21 (1997), 99–128 Zbl 0888.68097, MR 1479010
Reference: [16] Matúš F.: Conditional independences among four random variables III: final conclusion.Combin. Probab. Comput. 8 (1999), 269–276 Zbl 0941.60004, MR 1702569
Reference: [17] Matúš F.: Conditional independences in Gaussian vectors and rings of polynomials.In: Proc. Conditionals, Information, and Inference – WCII 2002 (Lecture Notes in Computer Science 3301; G. Kern-Isberner, W. Rödder, and F. Kulmann, eds.), Springer, Berlin 2005, pp. 152–161 Zbl 1111.68685
Reference: [18] Matúš F.: Towards classification of semigraphoids.Discrete Math. 277 (2004), 115–145 Zbl 1059.68082, MR 2033729
Reference: [19] Matúš F., Studený M.: Conditional independences among four random variables I.Combin. Probab. Comput. 4 (1995), 269–278 Zbl 0839.60004
Reference: [20] Pearl J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.Morgan Kaufmann, San Mateo, Calif. 1988 Zbl 0746.68089, MR 0965765
Reference: [21] Prasolov V. V.: Problems and Theorems in Linear Algebra.(Translations of Mathematical Monographs 134.) American Mathematical Society 1996 Zbl 1185.15001, MR 1277174
Reference: [22] Studený M.: Conditional independence relations have no finite complete characterization.In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (S. Kubík and J. Á. Víšek, eds.), Vol. B, Academia, Prague, and Kluwer, Dordrecht 1991, pp. 377–396
Reference: [23] Studený M.: Structural semigraphoids.Internat. J. Gen. Syst. 22 (1994), 207–217 Zbl 0797.60006
Reference: [24] Studený M.: Probabilistic Conditional Independence Structures.Springer, London 2005
Reference: [26] Šimeček P.: Classes of Gaussian, discrete and binary representable independence models have no finite characterization.In: Prague Stochastics (M. Hušková and M. Janžura, eds.), Matfyzpress, Charles University, Prague 2006, pp. 622–632
Reference: [27] Šimeček P.: Gaussian representation of independence models over four random variables.In: Proc. COMPSTAT 2006 – World Conference on Computational Statistics 17 (A. Rizzi and M. Vichi, eds.), Rome 2006, pp. 1405–1412
Reference: [28] Whittaker J.: Graphical Models in Applied Multivariate Statistics.Wiley, New York 1990 Zbl 1151.62053, MR 1112133
.

Files

Files Size Format View
Kybernetika_43-2007-3_5.pdf 971.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo