Previous |  Up |  Next

Article

Title: An atomic MV-effect algebra with non-atomic center (English)
Author: Olejček, Vladimír
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 3
Year: 2007
Pages: 343-346
Summary lang: English
.
Category: math
.
Summary: Does there exist an atomic lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question (and slightly more) is given: An example of an atomic MV-effect algebra with a non-atomic Boolean subalgebra of sharp or central elements is presented. (English)
Keyword: lattice effect algebra
Keyword: MV-effect algebra
Keyword: Archimedean effect algebra
Keyword: sharp element
Keyword: central element
Keyword: atom
MSC: 03G12
MSC: 06C15
MSC: 06D35
MSC: 81P10
idZBL: Zbl 1149.06006
idMR: MR2362723
.
Date available: 2009-09-24T20:24:22Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135778
.
Reference: [1] Chang C. C.: Algebraic analysis of many-valued logics.Trans. Amer. Math. Math. Soc. 88 (1958), 467–490 Zbl 0084.00704, MR 0094302
Reference: [2] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures Theory.Kluwer Academic Publications, Dordrecht 2000 MR 1861369
Reference: [3] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1325–1346 MR 1304942
Reference: [4] Greechie R. J., Foulis, D., Pulmannová S.: The center of an effect algebra.Order 12 (1995), 91–106 Zbl 0846.03031, MR 1336539
Reference: [5] Jenča G., Riečanová Z.: On sharp elements in lattice effect algebras.BUSEFAL 80 (1999), 24–29
Reference: [6] Kôpka F.: Compatibility in D-posets.Internat. J. Theor. Phys. 34 (1995), 1525–1531 Zbl 0851.03020, MR 1353696
Reference: [7] Kôpka F., Chovanec F.: D-posets.Math. Slovaca 44 (1994), 21–34 MR 1290269
Reference: [8] Riečanová Z.: Continuous lattice effect algebras admitting order-continuous states.Fuzzy Sets and Systems 136 (2003), 41–54 MR 1978468
Reference: [9] Riečanová Z.: Archimedean atomic lattice effect algebras in which all sharp elements are central.Kybernetika 42 (2006), 2, 143–150 MR 2241781
Reference: [10] Riečanová Z., Marinová, I., Zajac M.: Some aspects of generalized prelattice effect algebras.In: Theory and Application of Relational Structures as Knowledge Instruments II (H. de Swart et al., eds., Lecture Notes in Artificial Intelligence 4342), Springer–Verlag, Berlin 2006, pp. 290–317
.

Files

Files Size Format View
Kybernetika_43-2007-3_6.pdf 652.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo